Abstract
We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k, 4 ≤k ≤6, with minimum distance d ≡1 or 2 (mod 3) from a geometrical point of view. We also give the necessary and sufficient conditions for the extendability of ternary linear codes with diversity (θ
k − − 2,3k − − 2), (θ
k − − 2+3k − − 3,4 3k − − 3), (θ
k − − 2–3k − − 3,5
3k − − 3) for k ≥6, where θ
j
= (3j + 1–1)/2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hill, R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999)
Maruta, T.: On the extendability of linear codes. Finite Fields Appl. 7, 350–354 (2001)
Maruta, T.: Extendability of linear codes over GF(q) with minimum distance d, gcd(d,q) = 1. Discrete Math. 266, 377–385 (2003)
Maruta, T.: A new extension theorem for linear codes. Finite Fields Appl. 10, 674–685 (2004)
Maruta, T.: Extendability of ternary linear codes. Des. Codes Cryptogr. 35, 175–190 (2005)
Maruta, T., Okamoto, K.: Some improvements to the extendability of ternary linear codes. Finite Fields Appl. (to appear)
Okamoto, K., Maruta, T.: Extendability of ternary linear codes of dimension five. In: Proc. 9th International Workshop in Algebraic and Combinatorial Coding Theory (ACCT), Kranevo, Bulgaria, pp. 312–318 (2004)
Simonis, J.: Adding a parity check bit. IEEE Trans. Inform. Theory 46, 1544–1545 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maruta, T., Okamoto, K. (2006). Geometric Conditions for the Extendability of Ternary Linear Codes. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_8
Download citation
DOI: https://doi.org/10.1007/11779360_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35481-9
Online ISBN: 978-3-540-35482-6
eBook Packages: Computer ScienceComputer Science (R0)