Abstract
This papers reviews the classical theory of deterministic automata and regular languages from a categorical perspective. The basis is formed by Rutten’s description of the Brzozowski automaton structure in a coalgebraic framework. We enlarge the framework to a so-called bialgebraic one, by including algebras together with suitable distributive laws connecting the algebraic and coalgebraic structure of regular expressions and languages. This culminates in a reformulated proof via finality of Kozen’s completeness result. It yields a complete axiomatisation of observational equivalence (bisimilarity) on regular expressions. We suggest that this situation is paradigmatic for (theoretical) computer science as the study of “generated behaviour”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbib, M.A., Manes, E.G.: Foundations of system theory: Decomposable systems. Automatica 10, 285–302 (1974)
Arbib, M.A., Manes, E.G.: Algebraic Approaches to Program Semantics. In: Texts and Monogr. Comp. Sci., Springer, Heidelberg (1986)
de Bakker, J.W., Vink, E.: Control Flow Semantics. MIT Press, Cambridge (1996)
Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985), Revised and corrected version available from www.cwru.edu/artsci/math/wells/pub/ttt.html
Bartels, F.: On generalised coinduction and probabilistic specification formats. Distributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam (2004)
Beck, J.: Distributive laws. In: Eckman, B. (ed.) Seminar on Triples and Categorical Homolgy Theory. Lect. Notes Math., vol. 80, pp. 119–140. Springer, Berlin (1969)
Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journ. ACM 42(1), 232–268 (1988)
Brzozowski, J.A.: Derivatives of regular expressions. Journ. ACM 11(4), 481–494 (1964)
Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)
Fokkink, W.: On the completeness of the equations for the Kleene star in bisimulation. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 180–194. Springer, Heidelberg (1996)
Goguen, J.A.: Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78(5), 777–783 (1972)
Goguen, J.A.: Realization is universal. Math. Syst. Theor. 6(4), 359–374 (1973)
Goguen, J.A.: Discrete-time machines in closed monoidal categories. I. Journ. Comp. Syst. Sci. 10, 1–43 (1975)
Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Inf. Comp. 100(2), 202–260 (1992)
Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf. Comp. 145, 107–152 (1998)
Jacobs, B.: Objects and classes, co-algebraically. In: Freitag, B., Jones, C.B., Lengauer, C., Schek, H.-J. (eds.) Object-Orientation with Parallelism and Persistence, pp. 83–103. Kluwer Academic Publishers, Dordrecht (1996)
Jacobs, B.: Exercises in coalgebraic specification. In: Blackhouse, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002)
Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. Inf. & Comp. 204(4), 561–587 (2006), Earlier version in number 106 in Elect. Notes in Theor. Comp. Sci.
Johnstone, P.T.: Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc. 7, 294–297 (1975)
Kick, M.: Bialgebraic modelling of timed processes. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 525–536. Springer, Heidelberg (2002)
Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton University Press, Princeton (1956)
Koushik, S., Rosu, G.: Generating optimal monitors for extended regular expressions. In: Runtime Verification (RV 2003). Elect. Notes in Theor. Comp. Sci., vol. 89(2), Elsevier, Amsterdam (2003)
Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comp. 110(2), 366–390 (1994)
Kozen, D.: Myhill-nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)
Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and copointed endofunctors, monads and comonads. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science. Elect. Notes in Theor. Comp. Sci. vol. 33, Elsevier, Amsterdam (2000)
Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comp. Sci. 54(2-3), 267–276 (1987)
Perrin, D.: Finite automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 1–55. Elsevier/MIT Press (1990)
Reichel, H.: An approach to object semantics based on terminal co-algebras. Math. Struct. Comp. Sci. 5, 129–152 (1995)
Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)
Rutten, J.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theor. Comp. Sci. 308, 1–53 (2003)
Rutten, J., Turi, D.: Initial algebra and final coalgebra semantics for concurrency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 530–582. Springer, Heidelberg (1994)
Rutten, J.J.M.M.: Automata, power series, and coinduction: Taking input derivatives seriously (extended abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 645–654. Springer, Heidelberg (1999)
Turi, D.: Functorial operational semantics and its denotational dual. PhD thesis, Free Univ. Amsterdam (1996)
Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, pp. 280–291. IEEE, Computer Science Press (1997)
Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic Journ. Comput. 8(3), 366–390 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jacobs, B. (2006). A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages. In: Futatsugi, K., Jouannaud, JP., Meseguer, J. (eds) Algebra, Meaning, and Computation. Lecture Notes in Computer Science, vol 4060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780274_20
Download citation
DOI: https://doi.org/10.1007/11780274_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35462-8
Online ISBN: 978-3-540-35464-2
eBook Packages: Computer ScienceComputer Science (R0)