Skip to main content

A Bottom-Up Workflow Mining Approach for Workflow Applications Analysis

  • Conference paper
Data Engineering Issues in E-Commerce and Services (DEECS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4055))

Abstract

Engineering workflow applications are becoming more and more complex, involving numerous interacting business objects within considerable processes. Analysing the interaction structure of those complex applications will enable them to be well understood, controlled, and redesigned. Our contribution to workflow mining is a statistical technique to discover workflow patterns from event-based log. Our approach is characterised by a ”local” workflow patterns discovery that allows to cover partial results through a dynamic programming algorithm. Those local discovered workflow patterns are then composed iteratively until discovering the global workflow model. Our approach has been implemented within our prototype WorkflowMiner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

    Article  Google Scholar 

  2. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: 6th ACM SIGSOFT international symposium on Foundations of software engineering. ACM Press, New York (1998)

    Google Scholar 

  3. Gaaloul, W., Bhiri, S., Godart, C.: Discovering workflow transactional behaviour event-based log. In: 12th International Conference on Cooperative Information Systems (CoopIS 2004), Larnaca, Cypru, October 25-29. LNCS. Springer, Heidelberg (2004)

    Google Scholar 

  4. Gaaloul, W., Godart, C.: Mining Workflow Recovery from Event Based Logs. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 169–185. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Baïna, K., Berrada, I., Kjiri, L.: A Balanced Scoreboard Experiment for Business Process Performance Monitoring: Case study. In: 1st International E-Business Conference (IEBC 2005), Tunis, Tunisia, June 24-25 (2005)

    Google Scholar 

  6. van der Aalst, W.M.P.: Business alignment: Using process mining as a tool for delta analysis. In: CAiSE Workshops (2), pp. 138–145 (2004)

    Google Scholar 

  7. Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Service Protocols. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Baïna, K., Benatallah, B., Casati, F., Toumani, F.: Model-Driven Web Service Development. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 290–306. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–498. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM) 7(3), 215–249 (1998)

    Article  Google Scholar 

  11. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: Proceedings of the 6th ACM SIGSOFT international symposium on Foundations of software engineering, pp. 35–45. ACM Press, New York (1998)

    Chapter  Google Scholar 

  12. Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management to support acquisition and adaptation of workflow models. In: 9th International Workshop on DEXA, p. 745. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  14. Sayal, M., Casati, F., Shan, M.C., Dayal, U.: Business process cockpit. In: Proceedings of 28th International Conference on Very Large Data Bases (VLDB 2002), pp. 880–883 (2002)

    Google Scholar 

  15. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)

    Article  Google Scholar 

  16. Gaaloul, W., Baïna, K., Godart, C.: Towards Mining Structural Workflow Patterns. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 24–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. van der Aalst, W.M.P., van Dongen, B.F.: Discovering workflow performance models from timed logs. In: 1st International Conference on Engineering and Deployment of Cooperative Information Systems, pp. 45–63. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Weijters, A.J.M.M., van der Aalst, W.M.P.: Workflow mining: Discovering workflow models from event-based data. In: ECAI Workshop on Knowledge Discovery and Spatial Data, pp. 78–84 (2002)

    Google Scholar 

  19. Herbst, J., Karagiannis, D.: Workflow mining with inwolve. Comput. Ind. 53(3), 245–264 (2004)

    Article  Google Scholar 

  20. Schimm, G.: Process Miner - A Tool for Mining Process Schemes from Event-Based Data. In: European Conference on Logics in AI, pp. 525–528. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaaloul, W., Baïna, K., Godart, C. (2006). A Bottom-Up Workflow Mining Approach for Workflow Applications Analysis. In: Lee, J., Shim, J., Lee, Sg., Bussler, C., Shim, S. (eds) Data Engineering Issues in E-Commerce and Services. DEECS 2006. Lecture Notes in Computer Science, vol 4055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780397_15

Download citation

  • DOI: https://doi.org/10.1007/11780397_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35440-6

  • Online ISBN: 978-3-540-35441-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics