Abstract
This paper concerns the efficient construction of sparse and low stretch spanners for unweighted arbitrary graphs with n nodes. All previous deterministic distributed algorithms, for constant stretch spanner of o(n 2) edges, have a running time Ω(nε) for some constant ε> 0 depending on the stretch. Our deterministic distributed algorithms construct constant stretch spanners of o(n 2) edges in o(n ε) time for any constant ε> 0.
More precisely, in the Linial’s free model, we construct in \(n^{O(1/\sqrt{\log n})}\) time, for every graph, a 5-spanner of O(n 3/2) edges. The result is extended to O( k2.322)-spanners with O(n 1 + 1/k) edges for every parameter k ≥1. If the minimum degree of the graph is \(\Omega(\sqrt{n})\), then, in the same time complexity, a 9-spanner with O(n) edges can be constructed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Awerbuch, B.: Complexity of network synchronization. Journal of the Association for Computing Machinery 32, 804–823 (1985)
Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems. In: 19th Annual ACM Symposium on Theory of Computing (STOC), May 1987, pp. 230–240. ACM Press, New York (1987)
Awerbuch, B., Berger, B., Cowen, L.J., Peleg, D.: Near-linear cost sequential and distributed constructions of sparse neighborhood coverss. In: 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), November 1993, pp. 638–647. IEEE Computer Society Press, Los Alamitos (1993)
Awerbuch, B., Berger, B., Cowen, L.J., Peleg, D.: Fast distributed network decompositions and covers. Journal of Parallel and Distributed Computing 39, 105–114 (1996)
Awerbuch, B., Berger, B., Cowen, L.J., Peleg, D.: Near-linear time construction of sparse neighborhood covers. SIAM Journal on Computing 28(1), 263–277 (1998)
Awerbuch, B., Peleg, D.: Sparse partitions. In: 31th Annual IEEE Symposium on Foundations of Computer Science (FOCS), October 1990, pp. 503–513. IEEE Computer Society Press, Los Alamitos (1990)
Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α,β)-spanners and purely additive spanners. In: 16th Symposium on Discrete Algorithms (SODA), January 2005, pp. 672–681. ACM-SIAM, New York (2005)
Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-spanner of O(n 1 + 1/k) size in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer, Heidelberg (2003)
Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in \(\tilde{O}(n^2)\) time. In: 15th Symposium on Discrete Algorithms (SODA), January 2004, pp. 271–280. ACM-SIAM, New York (2004)
Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing 28(1), 210–236 (1998)
Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70(1), 32–53 (1986)
Cowen, L.J.: Compact routing with minimum stretch. Journal of Algorithms 38(1), 170–183 (2001)
Derbel, B., Mosbah, M., Zemmari, A.: Fast distributed graph partition and application. In: 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS), April 2006, IEEE Computer Society Press, Los Alamitos (2006)
Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor. Journal of Algorithms 46, 97–114 (2003)
Elkin, M.: Computing almost shortest paths. In: 20th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 53–62. ACM Press, New York (2001)
Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree. In: 15th Symposium on Discrete Algorithms (SODA), January 2004, pp. 359–368. ACM-SIAM, New York (2004)
Elkin, M.: Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning tree problems. In: 36th Annual ACM Symposium on Theory of Computing (STOC), May 2004, pp. 331–340. ACM Press, New York (2004)
Elkin, M., Peleg, D.: (1 + ε,β)-spanner constructions for general graphs. SIAM Journal on Computing 33(3), 608–631 (2004)
Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε,β)-spanners in the distributed and streaming models. In: 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), July 2004, pp. 160–168. ACM Press, New York (2004)
Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. Journal of Algorithms 53(1), 85–112 (2004)
Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)
Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), July 2004, pp. 300–309. ACM Press, New York (2004)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: 17th Symposium on Discrete Algorithms (SODA), January 2006, pp. 980–989. ACM-SIAM, New York (2006)
Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and applications. Journal of Algorithms 28(1), 40–66 (1998)
Linial, N.: Distributive graph algorithms - Global solutions from local data. In: 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS), October 1987, pp. 331–335. IEEE Computer Society Press, Los Alamitos (1987)
Linial, N.: Locality in distributed graphs algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in O(loglogn) communication rounds. SIAM Journal on Discrete Mathematics 35(1), 120–131 (2005)
Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter graphs. In: 20th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 63–71. ACM Press, New York (2001)
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)
Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 15(4), 1036–1053 (1986)
Moran, S., Snir, S.: Simple and efficient network decomposition and synchronization. Theoretical Computer Science 243(1-2), 217–241 (2000)
Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. Journal of Algorithms 20(2), 356–374 (1996)
Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications (2000)
Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM Journal on Computing 30(5), 1427–1442 (2000)
Peleg, D., Ullman, J.D.: An optimal synchornizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)
Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. Journal of the ACM 36(3), 510–530 (1989)
Penso, L.D., Valmir, C.B.: A distributed algorithm to find k-dominating sets. Discrete Applied Mathematics 141(1-3), 243–253 (2004)
Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. In: 13th Symposium on Discrete Algorithms (SODA), January 2002, pp. 844–851. ACM-SIAM (2002)
Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)
Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), July 2001, pp. 1–10. ACM Press, New York (2001)
Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005)
Wenger, R.: Extremal graphs with no C 4’s, C 6’s, or C 10’s. Journal of Combinatorial Theory, Series B 52(1), 113–116 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Derbel, B., Gavoille, C. (2006). Fast Deterministic Distributed Algorithms for Sparse Spanners. In: Flocchini, P., Gąsieniec, L. (eds) Structural Information and Communication Complexity. SIROCCO 2006. Lecture Notes in Computer Science, vol 4056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780823_9
Download citation
DOI: https://doi.org/10.1007/11780823_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35474-1
Online ISBN: 978-3-540-35475-8
eBook Packages: Computer ScienceComputer Science (R0)