Abstract
OLAP provides an efficient way for business data analysis. However, most up-to-date OLAP tools often make the analysts lost in the sea of data while the analysts usually focus their interest on a subset of the whole dataset. Unfortunately, OLAP operators are usually not capsulated within the subset. What’s more, the users’ interests often arise in an impromptu way after the user getting some information from the data. In this paper, we give the definition of users’ interests and propose the user-defined virtual cubes to solve this problem. At the same time, we present an algorithm to answer the queries upon virtual cube. All the OLAP operators will be encapsulated within this virtual cube without superfluous information retrieved. Experiments show the effectiveness and efficiency of the virtual cube mechanism.
This work is supported by the National Natural Science Foundation of China under Grant No.60473072.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Agrawal, R., Deshpande, P.M., et al.: On the Computation of Multi-dimensional Aggregations. In: Proc. of the 22nd VLDB Conference, India (1996)
Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting Dimension Updates in an OLAP Server. In: Proceedings of the 7th ACM international workshop on Data warehousing and OLAP, Washington, DC, USA, November 12-13 (2004)
Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Proc. 1999 ACM-SIGMOD Int.Conf. Management of Data (SIGMOD 1999), Philadelphia, PA, pp. 359–370 (June 1999)
Codd, E.F., Codd, S.B., Salley, C.T.: Beyond decision support. Computer Would 27 (July 1993)
Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Updating OLAP dimensions. In: Proceedings of ACM DOLAP 1999 (1999)
Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 1996), Montreal, Canada, pp. 205–216 (June 1996)
Li, X., Han, J., Gonzalez, H.: High-Dimensional OLAP: A Minimal Cubing Approach. In: VLDB (2004)
Cui-Ping, L., Sheng-En, L., Shan, W., Xiao-Yong, D.: A Constraint-Based Multi-Dimensional Data Exception Mining Approach. Journal of Software (2003)
Lakshmanan, V.S., Pei, J., Han, J.W.: Quotient cube: How to summarize the semantics of a data cube. In: Proc. of the 28th Int’l. Conf. on Very Large Data Bases, pp. 778–789. Morgan Kaufmann Publishers, Hong Kong (2002)
Lashmanan, L.V.S., Pei, J., Zhao, Y.: QC-Trees: An efficient summary structure for semantic OLAP. In: Proc. 2003 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2003), San Diego, California (June 2003)
Chirkova, R., Li, C.: Materializing Views with Minimal Size To Answer Queries. In: PODS (2003)
Ng, R.T., Wagner, A.S., Yin, Y.: Iceberg-cube computation with PC clusters. In: Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 2001), Santa Barbara, CA (May 2001)
Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proc. of the 26th Int’l. Conf. on Very Large Data Bases, pp. 307–316. Morgan Kaufmann Publishers, Cairo (2000)
Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In: Proc. of the 27th Int’l. Conf. on Very Large Data Bases, pp. 450–531. Morgan Kaufmann Publishers, Roma (2001)
Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proc. of the 25th Int’l. Conf. on Very Large Data Bases, Morgan Kaufmann Publishers, Edinburgh (1999)
Young-Koo, L., Kyu-Young, W., Yang-Sae, M., Il-Yeol, S.: A One-Pass Aggregation Algorithm with the Optimal Buffer Size in Multidimensional OLAP. In: VLDB (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, D., Tan, S., Yang, D., Tang, S., Ma, X., Jiang, L. (2006). Dynamic Construction of User Defined Virtual Cubes. In: Etzion, O., Kuflik, T., Motro, A. (eds) Next Generation Information Technologies and Systems. NGITS 2006. Lecture Notes in Computer Science, vol 4032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780991_25
Download citation
DOI: https://doi.org/10.1007/11780991_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35472-7
Online ISBN: 978-3-540-35473-4
eBook Packages: Computer ScienceComputer Science (R0)