Abstract
This paper describes an algorithm to segment mammo- graphic images into regions corresponding to different densities. The breast parenchymal segmentation uses information extracted for statistical texture based classification which is in turn incorporated in multi-vector Markov Random Fields. Such segmentation is key to developing quantitative mammographic analysis. The algorithm’s performance is evaluated quantitatively and qualitatively and the results show the feasibility of segmenting different mammographic densities.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Heine, J., Malhotra, P.: Mammographic tissue, breast cancer risk, serial image analysis and digital mammography. part 1. tissue and related risk factors. Academic Radioly 9, 298–316 (2002)
Miller, P., Astley, S.: Classification of breast tissue by texture and analysis. Image and Vision Computing 10, 277–282 (1992)
Zwiggelaar, R., Planiol, P., Marti, J., Marti, R., Blot, L., Denton, E., Rubin, C.: EM texture segmentation of mammographic images. In: Peitgen, H. (ed.) International Workshop on Digital Mammography, Bremen, Germany, pp. 223–227. Springer, Heidelberg (2002)
Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: A statistical approach. In: Proceedings of EMBC, International Conference on Engineering in Medicine and Biology, pp. 798–801. IEEE, Los Alamitos (2003)
Brault, P., Mohammad-Djafari, A.: Bayesian segmentation and motion estimation in video sequences using a markov-potts model. In: Proceedings of WSEAS Conference on Applied Mathematics 2004 (2004)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)
Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)
Fwu, J.K., Djuric, P.M.: Unsupervised vector image segmentation by a tree structure-icm algorithm. IEEE Trans. Med. Imag. 15(6), 871–880 (1996)
Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological) 48(3), 259–302 (1986)
Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B 36(2), 192–236 (1974)
Linguraru, M.G., Marias, K., Brady, J.M.: Temporal mass detection. In: International Workshop on Digital Mammography (2002)
Petroudi, S., Brady, M.: Breast segmentation. In: Seventh International Workshop on Digital Mammography. Medical Physics Publishing (2004)
Wolfe, J.N.: Breast parenchymal patterns and their changes with age. Radiology 121, 545–552 (1976)
Vujovic, N., Brzakovic, D.: Establishing correspondence between control points in pairs of mammographic images. IEEE Transactions on Image Processing 6(10), 1388–1399 (1997)
Evertsz, C.J.G., Bodicker, A., Bohnenkamp, S., Dechow, D., Beck, C., Peitgen, H.-O., Berger, L., Weber, U., Jurgens, H., Hendriks, C.L., Karssemeijer, N., Brady, M.: Soft-copy reading environment for screening mammography - screen. In: Yaffe, M. (ed.) Fifth International Workshop in Digital Mammogrphy, pp. 566–572 (2000)
Miller, P., Astley, S.: Automated detection of mammographic asymmetry using anatomical features. International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1461–1476 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petroudi, S., Brady, M. (2006). Breast Density Segmentation Using Texture. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_82
Download citation
DOI: https://doi.org/10.1007/11783237_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35625-7
Online ISBN: 978-3-540-35627-1
eBook Packages: Computer ScienceComputer Science (R0)