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Abstract

The pattern matching calculi introduced by the first author are a refinement of the λ-calculus that
integrates mechanisms appropriate for fine-grained modelling of non-strict pattern matching.

While related work in the literature only uses a single monad, typically Maybe, for matchings,
we present an axiomatic approach to semantics of these pattern matching calculi using two monads,
one for expressions and one for matchings.

Although these two monads only need to be relatively lightly coupled, this semantics implies
soundness of all core PMC rules, and is a useful tool for exploration of the design space for pattern
matching calculi.

Using lifting and Maybe monads, we obtain standard Haskell semantics, and by adding another
level of Maybe to both, we obtain a denotational semantics of the “matching failure as exceptions”
approach of Erwig and Peyton Jones. Using list-like monads opens up interesting extensions in the
direction of functional-logic programming.
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1 Introduction

Although (pure) functional programming in general is very accessible to equational reasoning, the
addition of pattern-matching function definitions introduces non-equations looking like equations, for
example the second line in

isEmptyList (x : xs) = False

isEmptyList ys = True

The operational semantics of such definitions employs the functional rewriting strategy defined over
several pages by Plasmeijer and van Eekelen [Plasmeijer, van Eekelen 1993] or, essentially equivalently,
in the section on case expressions in the Haskell report [Peyton Jones+ 2003]. This implies that
syntactic use of the definitions of a program in reasoning about that program has to take into account
that complex strategy, and loses the simplicity of equational reasoning.

The pattern matching calculus (PMC) introduced by Kahl [Kahl 2004] remedies this situation.
It separates pattern matching aspects into a separate syntactic category of “matchings”, not unlike
groups of “case branches p -> e” considered by Harrison et al. [Harrison, Sheard+ 2002], but with
an additional “argument supply” constructor that rationalises and generalises the pattern guards
proposed by Erwig and Peyton Jones [Erwig, Jones 2001]. PMC is equipped with a confluent (second-
order) rewriting system, thereby enabling equational reasoning starting from the definitions of a pro-
gram. The rewriting system directly gives a normalisation strategy [Kahl 2004].

PMC allows straightforward internalisation of pattern matching definitions without the ballast of
having to introduce the new variables necessary as case arguments (the syntax will be explained in
detail in Sect. 2):

isEmptyList = { (x : xs) ⇒ ↿False↾ ys ⇒ ↿True↾ }

Application to the empty list [] induces the following reduction sequence:

isEmptyList [] −→ { (x : xs) ⇒ ↿False↾ ys ⇒ ↿True↾ } []

−→ { [] ⊲ ((x : xs) ⇒ ↿False↾ ys ⇒ ↿True↾) }

−→ { [] ⊲ (x : xs) ⇒ ↿False↾ [] ⊲ ys ⇒ ↿True↾ }

−→ { [] ⊲ ys ⇒ ↿True↾ }

−→ { [] ⊲ ys ⇒ ↿True↾ }

−→ { ↿True↾ }

−→ True

There is also a “conservative embedding” of the λ-calculus into PMC: Application is the same, and
abstraction translates into a one-alternative variable-pattern matching:

λ v . e := { v ⇒ ↿e↾ }

With this definition, β-reduction can be emulated by a three-step reduction sequence in PMC (the
reduction rules are listed in Fig. 5 and explained in Appendix B):

(λ v . e) a = { v ⇒ ↿e↾ } a

−−−→
({ }@)

{ a ⊲ v ⇒ ↿e↾ }

−−−→
(⊲v)

{ ↿e↾[v\a] }

= { ↿e[v\a]↾ }

−−−→
({ ↿↾ })

e[v\a]
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β-normal forms translate into PMC normal forms, and PMC reduction sequences starting from trans-
lations of λ-terms essentially correspond to β-reduction sequences, so the embedding is faithful.

Pattern guards extend Boolean guards with the ability to bind additional variables; Peyton Jones’
standard example is:

clunky env v1 v2 | Just r1 <- lookup env v1

, Just r2 <- lookup env v2 = r1 + r2

| otherwise = v1 + v2

This directly translates into PMC, with a slightly different structure (with appropriate conventions,
we could omit more parentheses):

clunky = { env ⇒ v1 ⇒ v2 ⇒ ((lookup env v1 ⊲ Just(r1) ⇒

lookup env v2 ⊲ Just(r2) ⇒ ↿r1 + r2↾)

↿v1 + v2↾)

}

PMC is really a family of calculi based on a common core syntax: starting from the rewriting system
corresponding to Haskell evaluation or the standard functional strategy and exchanging a single rule,
we obtain a system that corresponds to Erwig and Peyton Jones’s proposal [Erwig, Jones 2001] to
treat pattern matching failure as an exception that can be caught in the same or in another case
expression.

In this paper, we provide a semantic basis for the exploration of these and further pattern matching
calculi by giving a compositional monadic semantics for the core PMC syntax. The interesting aspect
is that the two syntactic categories of PMC correspond to two separate monads that are, in general,
only relatively lightly coupled. As we fundamentally use the separate notions of “computation” in
each syntactic category, it is very natural to use a monadic formalism, and from there to continue
using a categorical setting throughout for our semantics. It has been suggested to us that using a
metalanguage like that of [Moggi 1991b] could clarify our presentation; while we agree with this, we
do not yet know how to model the necessary “pointwise extensions” we need (see Sect. 4.1) in the
metalanguage. Thus we have opted to stay with a purely categorical presentation.

The main contributions of this paper are the clean separation of concerns between the (monadic)
semantics of expressions and of matchings, the crucial observation that the interpretation of function
types must be different for matchings and expressions, and a clean isolation of the design choices
available when considering pattern-matching semantics. Another important technical ingredient was
the need to create appropriate “pointwise extensions” of operations in the base monads to function
types — something routinely done in mathematics, but seldom done in statically typed programming
languages.1

After presenting and explaining the abstract syntax of simply typed PMC in the next section, we
fix some category-theoretical notation and terminology in Sect. 3.1 before defining the bimonadic PMC
semantics in Sect. 4. In Sect. 5 we give the soundness theorem for the core reduction rules from [Kahl
2004] (listed in Appendix B) with respect to our semantics without further constraints on the two
monads, and explain the core of its proof steps. We then start an exploration of possible bimonadic
constellations for alternative interpretations of PMC in Sect. 6.

Acknowledgement. We would like to thank the anonymous referees of draft versions of this report
for their valuable comments.

1MapleTMand MathematicaTMboth overload arithmetic operators so that f + g means pointwise addition, but both
of these languages are dynamically typed.
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2 Abstract PMC Syntax

PMC has two major syntactic categories, expressions and matchings. These are defined by mutual
recursion.

When considering the analogy to functional programs, only expressions of the pattern matching
calculus correspond to expressions of functional languages.

Matchings can be seen as a generalisation of (groups of) case alternatives. Matchings can expose
patterns to be matched against arguments; we say such matchings are waiting for argument supply,
and give them function types. Complete case expressions correspond to expressions formed from
matchings that already have an argument supplied to their outermost patterns; matchings that have
arguments supplied to all their open patterns are called saturated. Argument supply to patterns is
separated from performing pattern matching itself; depending on the outcomes of the involved pattern
matchings, saturated matchings can succeed and then return an expression, or they can fail.

Patterns form a separate, auxiliary syntactic category that will be used to construct pattern
matchings.

In this paper, we will consider a class of simply-typed pattern matching calculi with common
syntax; the abstract syntax of these calculi is defined by the following grammar:

Pat ::= Var variable
| Constr(Pat, . . . ,Pat) constructor pattern

Expr ::= Var variable
| Constr(Expr, . . . ,Expr) constructor application
| Expr Expr function application
| { Match } (result) extraction
| ⊘Type empty expression

Match ::= ↿Expr↾ lifting
| Type failure
| Pat ⇒ Match pattern matching
| Expr ⊲ Match argument supply
| Match Match alternative

Since this syntax has a number of unusual aspects, we explain the intuition behind it in more detail
below.

Throughout this paper, we will use the following conventions for meta-level variables:

• α. αi , β, . . . are types; τ , τi are constructed types.

• v , vi , wi , x , xi , y , yi are variables; c, d are constructors.

• p, p1, p2, . . ., q are patterns; m, m1, m2, . . . are matchings,

• a, b, e, e1, e2, . . ., f are expressions,

• i , k , n are natural numbers,

Types are generated from data type constructors and the function type constructor. Technically, we
assume a family (TConstrk )k∈N of disjoint countable sets of data type constructors of arity k , and
types are generated by:

Type ::= TConstrk (Type1, . . . ,Typek ) constructed types
| Type → Type function types
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For the sake of simplicity, we do not consider polymorphism in this paper, so there are no type
variables, and therefore no concept of principal types; each well-typed expression or matching has
exactly one type.

We then assume that the set of constructors is organised as a family of disjoint countable sets
Constrα1×···×αn→τ for all types α1, . . . , αn , τ .

We also assume that the set of (expression) variables is organised as a family of disjoint countable
sets

Var =
⊎

α∈Type

Varα

and a function type : Var → Type to be given such that v ∈ Vartype v for each variable v ∈ Var. Type
judgements then need no context.

For the purpose of our examples, all literals, like numbers and characters, are assumed to be
constructors of appropriate types, and are used only in zero-ary constructions (which are written
without parentheses). Constructors will, as usual, be used to build both patterns and expressions.
Indeed, one might consider Pat as a subset of Expr.

Typing judgements expressing that pattern p, expression e, respectively matching m are well-typed
of type α are written in the following way:

⊢
P

p : α ⊢
E

e : α ⊢
M

m : α

Patterns are built from variables and constructor applications. All variables occurring in a pattern
are free in that pattern; for every pattern p : Pat, we denote its set of free variables by FV(p). In the
following, we silently restrict all patterns to be linear, i.e., not to contain more than one occurrence
of any variable. The pattern typing rules are shown in Fig. 1.

⊢
P

v : type v

c ∈ Constrα1×···×αn→τ ⊢
P

p1 : α1 · · · ⊢
P

pn : αn

⊢
P

c(p1, . . . , pn) : τ

Figure 1: Pattern typing rules

Expressions are the syntactic category that embodies the term construction aspects; besides variables,
constructor application and function application, we also have the following special kinds of expres-
sions: Every matching m gives rise to the (result) extraction {m }. If the type of matching m is a
function type, then {m } extracts a function from m. If m is not a pattern matching again, then it
can either succeed or fail; if it succeeds, then {m } extracts the value(s) “returned” by m; otherwise,
{m } extracts “nothing”, which can also be expressed as the expression ⊘, which is henceforth called
the empty expression.

We use this somewhat uncommitted name “empty expression” since we shall consider two inter-
pretations of ⊘:

• It can be a “manifestly undefined” expression equivalent to non-termination, following the com-
mon view that divergence is semantically equivalent to run-time errors.

• It can be a special “error” value, propagating matching failure considered as an “exception”
through the syntactic category of expressions.

None of the expression constructors binds any variables; we overload the FV( ) notation and use it to
denote the set of free variables FV(e) for an expression e : Expr. Expressions are typed according to
the rules in Fig. 2.
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⊢
E

v : type v ⊢
E

⊘α : α

⊢
M

m : α

⊢
E

{m } : α

c ∈ Constrα1×···×αn→τ ⊢
E

e1 : α1 · · · ⊢
E

en : αn

⊢
E

c(e1, . . . , en) : τ

⊢
E

e1 : α → β ⊢
E

e2 : α

⊢
E

(e1 e2) : β

Figure 2: Expression typing rules

Matchings are the syntactic category that embodies the pattern analysis aspects:

• For an expression e : Expr, the lifting or expression embedding ↿Expr↾ can be seen as the matching
that always succeeds and attempts to lift the result e into the enclosing expression, so we propose
to read it “lift e”.

• Failure is the matching that always fails.

• The pattern matching p ⇒ m waits for supply of one argument more than m; this pattern
matching can be understood as succeeding on instances of the (linear) pattern p : Pat and
then continuing to behave as the resulting instance of the matching m : Match. It roughly
corresponds to a single case alternative in languages with case expressions, or to pattern-binding
λ-abstractions.

• argument supply a ⊲ m is the matching-level incarnation of function application, with the argu-
ment on the left and the matching it is supplied to on the right. It saturates the first argument
m is waiting for. “a ⊲ m” can be read “a into m” or “a feeds m”. The inclusion of argu-
ment supply into the calculus is an important source of flexibility. By separating the aspects of
traversing the boundary between expressions and matchings, and matching patterns against the
right arguments, the design of the reduction system is made more modular.

• the alternative m1 m2 combines the possible matching results of m1 and m2 in some way that can
usefully be understood as “alternative”. In instances corresponding to conventional functional
programming, it has to be understood sequentially: m1 m2 then behaves like m1 until this fails,
and then (and only then) it behaves like m2.

The typing rules for matchings are again straight-forward, and are shown in Fig. 3.

⊢
M

α : α

⊢
E

e : α

⊢
M

↿e↾ : α

⊢
M

m1 : α ⊢
M

m2 : α

⊢
M

(m1 m2) : α

⊢
E

e : α ⊢
M

m : α → β

⊢
M

(e ⊲ m) : β

⊢
P

p : α ⊢
M

m : β

⊢
M

(p ⇒ m) : α → β

Figure 3: Matching typing rules

Pattern matching p ⇒ m binds all variables occurring in p, so FV(p ⇒ m) = FV(m) − FV(p),
letting FV(m) denote the set of free variables of a matching m. Pattern matching is the only variable
binder in this calculus — taking this into account, the definitions of free variables, bound variables,
and substitution are as usual. Note that there are no “matching variables”; variables can only occur
as patterns or as expressions.
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We will omit the parentheses in matchings of the shape a ⊲ (p ⇒ m) since there is only one way
to parse a ⊲ p ⇒ m in PMC.

As-Patterns and Irrefutable Patterns

Several “more advanced” pattern matching facilities have been proposed in the literature; Haskell98
defines two of those, namely as-patterns and irrefutable patterns. Both are defined via syntactic
translations in the Haskell98 report. For as-patterns, the following translation is used:

case v of{x@p → e; → e ′} = case v of{p → (λ x → e) v ; → e ′}

In PMC, we can arrange this slightly more economically, thanks to the possibility to have sequential
matchings — in Haskell with pattern guards, the same approach would be possible:

x@p ⇒ m = x ⇒ x ⊲ p ⇒ m

Although irrefutable patterns appear to be much more intricate, the Haskell98 report formally defines
these using a straight-forward translation:

case v of{ p̃ → e; → e ′} = (λ x1 . . . xn → e) (case v of{p → x1}) . . . (case v of{p → xn})

where x1, . . . , xn are all the variables in p

Non-strictness implies that matching (with potential failure) is only performed when evaluation of e
requires one of the xi . We can follow the same approach:

p̃ ⇒ m = y ⇒ (y ⊲ p ⇒ x1) ⊲ x1 ⇒ . . . (y ⊲ p ⇒ xn) ⊲ xn ⇒ m

where x1, . . . , xn are all the variables in p and y is a new variable.

The above two translations could be used as reduction rules. Another option is to restrict ourselves
to a core calculus where only variables can be arguments of constructors in patterns; then the above
two translations turn into expansion rules and we can consider as-patterns and irrefutable patterns as
syntactic sugar. This approach also requires an expansion rule for nested patterns, considering them
as just an abbreviation for sequential matchings:

c(p1, . . . , pn) ⇒ m := c(y1, . . . , yn) ⇒ y1 ⊲ p1 ⇒ · · · yn ⊲ pn ⇒ m

where y1, . . . , yn are distinct new variables.

With this, pattern semantics becomes slightly easier to formulate, but nothing else really changes.

3 PMC Monads

We will define the semantics for PMC in an abstract categorical setting; we assume some “standard”
familiarity with category theory basics (some more details are supplied in the appendix). We quickly
introduce the notations we need in Sect. 3.1, then characterise the bi-monadic setting for PMC-
semantics in Sect. 3.2, and also explain some simple instances of this setting.

3.1 Summary of Categorical Notation

We will define the semantics for PMC in an abstract categorical setting; in this section we assume
some “standard” familiarity with category theory basics, and quickly introduce the notations we need;
some more details are supplied in Appendix A.
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We write f : a → b for a morphism with source object a and target object b. The identity on
object a is ida , and composition of morphisms f : a → b and g : b → c is written f ;g .

We assume a choice × of binary products with projections fsta,b : a×b → a and snda,b : a×b → b,
and morphism pairing 〈f , g〉 : c → a × b for morphisms f : c → a and g : c → b. We will denote by
terma : a → 1 the unique morphism into the terminal object 1.

As we restrict ourselves to cartesian closed categories, for every two objects a and b, there are an
exponential object (for “functions from a to b”) written [a → b], a “function application” morphism
eval[a→b] : [a → b] × a → b, and a currying operation Λ that maps every morphism f : c × a → b to
the unique morphism Λf : c → [a → b] such that (Λf × ida);eval[a→b] = f .

We essentially follow Barr and Wells [Barr, Wells 1999] in adopting the following notations: we
write Πi : I • a(i) for the indexed (but not necessarily ordered) product over the finite index set I,
with component a(i) for index i ; the projection to the sub-product indexed by elements of a subset
J ⊆ I is

projaI≻J : (Πi : I • a(i)) → (Πi : J • a(i)) .

We identify singleton products with their components: (Πi : {j} • a(i)) = a(j ).

We will follow category theoretic usage in writing both the object mapping and the morphism
mapping of a functor as an application of the functor name (Haskell uses the the Functor class member
fmap for the morphism mapping). So for a functor H and a morphism f : a → b, we have H f :
H a → H b.

Given two functors H and K between the same two categories, a natural transformation t : H → K
is a function mapping each object a in the source category of H and K to a morphism ta : H a → K a
in the target category, such that for f : a → b, the following diagram commutes (the naturality
condition):

K a
K f - K b

ta

6
tb

6

i.e., H f ; tb = ta ; K f

H a
H f - H b

A monad is a triple (M , returnM , joinM ) consisting of an endofunctor M together with two natural
transformations which, for readability, we also present as polymorphic morphisms:

returnM : id → M , i.e., returnM
a : a → M a

joinM : M ;M → M , i.e., joinM
a : M (M a) → M a

(The required laws are listed in Appendix A.3.)

Every monad M gives rise to a so-called Kleisli category; it has returnM morphisms as identities, and
for arrows f : a → M b and g : b → M c, composition is defined as:

f ⊙M g : a → M c

f ⊙M g = f ; M g ; joinM
c

An additive monad in addition has two natural transformations

zeroM : 1→ M , i.e., zeroM
a : 1→ M a

plusM : M × M → M , i.e., plusMa : M a × M a → M a
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with zeroM being (up to the canonical isomorphisms) a right and left unit for plusM , and plusM

associative.

As Moggi explains in [Moggi 1991b], we need strong monads for being able to deal with expressions
with more than one free variable; a strong monad M has a natural transformation

strengthLM
a,b : a × M b → M (a × b)

called tensorial strength satisfying several properties listed in the appendix A.4. Using the isomorphism
(swapa,b from a×b to b×a), we can define the “swapped version” strengthRM

a,b : M a×b → M (a×b).
This allows us to define

⊗M : (M a × M b) → M (a × b)

as well as an n-ary version of the same via folding over ordered tuples, still denoted ⊗M.

For additive strong monads, we also demand (ida × zeroM
b );strengthLM

a,b = zeroM
a×b .

3.2 The Bi-Monadic Setting

We need a monad E for the expression semantics, and an additive monad M for the matching semantics,
so we have zeroM and plusM. In addition, there should be two natural transformations

extract : M → E , i.e., extracta : M a → E a

lift : E → M , i.e., lifta : E a → M a

satisfying the following additional laws:

lift;extract = idE , i.e., lifta ;extracta = idE a (lift;extract)

returnE
;lift = returnM , i.e., returnE

a
;lifta = returnM

a (returnE
;lift)

The law (lift;extract) ensures that lifta is injective; a further consequences of these laws is:

returnM
a

;extracta = returnE
a
;lifta ;extracta = returnE

a .

Although it is tempting to demand that lift and extract should be monad homomorphisms, i.e., not
only preserve return, but also join, we have not found it necessary to make that assumption for proving
that the core PMC reduction rules are sound with respect to the semantics given in Sect. 4.

Two particularly simple patterns of binmonadic settings will cover most of the examples discussed
in Sect. 6:

Setting 3.2.1 (M = E)

We can use the same monad in both rôles of matching monad and expression monad, with identical
natural transformations for extract and lift. Such a setting trivially satisfies the laws (lift;extract) and
(returnE

;lift).

Setting 3.2.2 (M = E + 1)
More interesting is the case where the image of zeroM

a is disjoint from the image of lifta .

On the first class of settings we consider, the matching monad M is the monad coproduct (see
[Lüth, Ghani 2002]) of the expression monad E and the constant monad 1. This gives us as the two
monad coproduct injections the natural transformations lift : E → M and zeroM : 1 → M; since these
commute by definition with return and join, the law (returnE

;lift) is automatically satisfied.
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For any choice of monad homomorphism emptyE : 1 → E, we then define extract : M → E as
the mediating morphism extract := [idE, emptyE], and from the coproduct definition we immediately
obtain (lift;extract), and:

zeroM
;extract = zeroM

;[idE, emptyE] = emptyE (zero;extract)

For the additive part of M, we still need to define plusM : M×M → M. To be able to essentially follow
the additive pattern of the Maybe monad, we restrict ourselves to cases where there is a distribution
isomorphism distrLE,1 from M × M = (E + 1) × M to (E × M) + (1× M), so we can define:

plusM = distrLE,1 ; [fstE,M;lift , snd1,M]

4 Monadic PMC Semantics

The semantics in this section is very much influenced by previous work, more specifically [Moggi 1991a;
Moggi 1991b; Jung, Fiore+ 1996].

4.1 Type Semantics

The interpretation of function types is different for matchings and expressions. Therefore, for defining
type semantics in the setting of the two monads E and M, we will use K ∈ {E, M} as a meta-variable
to unify treatment of expression and matching semantics.

For each of our two syntactic categories of expressions and matchings, we will define below two
different type semantics (both parameterised with a monad K) for each type α:

• the “raw” type semantics [[α]]K, and

• the “standard” type semantics [[α]]K.

As a mnemonic rule, one could remember that “superscript semantics” [[α]]K = K [[α]]K is, in a gen-
eralised way, “in” the monad, while subscript [[α]]K semantics only “involves” the monad, where “in-
volving” means that the type typically is a container of items “in” the monad.

Constructed Types

For each constructed type τ , the type semantics is obtained from the raw type semantics by application
of the corresponding monad:

[[τ ]]K = K [[τ ]]K ,

and the “raw” semantics [[τ ]]K is the direct sum (over all constructors producing this type) of the
direct products of the corresponding constructor argument types.2 Since constructor applications
take expressions as arguments, these argument types have to be wrapped in the expression semantics
monad E — the raw semantics of constructed types τ does indeed not depend on K.

[[τ ]]K =
⊎

n∈N,(c:α1×···×αn→τ)∈Constr

[[α]]E

where we use [[α]]E to denote

[[α1]]
E × · · · × [[αn ]]E

2Since, normally, only finite sets of constructors are considered, practical applications only require finite sums to exist
in the underlying category.
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A constructor c : α1 × · · · × αn → τ is then interpreted by the corresponding constructor injection
cE : [[α]]E → [[τ ]]E together with the corresponding destructor morphism:

c̃E : [[τ ]]E → M ([[α]]E)

such that cE
;c̃E = returnM

[[α]]E
and, if c 6= d , with d : β1 × · · · × βn → τd , then:

dE
;c̃E = termC

[[β]]E
;zeroM

[[α]]E

Function Types

Now consider the raw semantics of function types. Since all application constructs of the PMC syntax
(constructor application, function application, and argument supply) take expressions as arguments,
the argument type in the K-semantics will always be the expression type semantics of the argument
type β. The result type however depends on the context, and will therefore be the (raw) K-semantics
of the result type γ:

[[β → γ]]K = [[[β]]E → [[γ]]K]

[[β → γ]]K = [[[β]]E → [[γ]]K]

In order to ease analysis of our semantics, we provide essentially full type information, but this tends
to blow up our notation. We therefore incorporate the function type semantics pattern into a variant
notation for eval:

EvalKβ,γ : [[β → γ]]K × [[β]]E → [[γ]]K

EvalKβ,γ := eval[[[β]]E→[[γ]]K]

Point-wise Extension Combinators

Since the semantics of function types is not directly monadic, we need a generalisation of Kleisli
composition: If f : q → K r and g : r → [[α]]K, then (f ⊡K

α g) : q → [[α]]K is defined by:

f ⊡K
τ g = f ⊙K g

f ⊡K
β→γ g = Λ

(
((f × id[[β]]E);strengthRK

r ,[[β]]E) ⊡K
γ ((g × id[[β]]E);EvalKβ,γ)

)

This behaves “mostly like” Kleisli composition: we have (f ;g) ⊡K
α h = f ;(g ⊡K

α h) (Lemma C.2), so we
can omit those parentheses, and we also have returnK

r ⊡K
α g = g (Lemma C.1).

Because of the way we treat of function types, we shall frequently need a construction that corre-
sponds to “point-wise extension to function types” of the composition f ;t[[τ ]] of a morphism f : q → [[τ ]]K

with a transformation t : K → H. For this purpose, we define the following “generalised composition”
operation inductively over the function type structure.
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If f : q → [[α]]K, then [q f ; α t ] : q → [[α]]H is defined by:3

[q f ; τ t ] = f ;t[[τ ]]

[q f ; β→γ t ] = Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ]

This even works for K = 1 since the constant functor 1 is trivially a strong monad; in this case all f
arguments are morphisms to the terminal object 1.

Similarly, we need a “pointwise extension” of plusM to function types: For two morphisms g1, g2 :
q → [[α]]M, we define g1 ⊞α g2 : q → [[α]]M as:

g1 ⊞τ g2 = 〈g1, g2〉;plusM g1 ⊞β→γ g2 = Λ




(g1 × id[[β]]E);EvalMβ,γ

⊞γ

(g2 × id[[β]]E);EvalMβ,γ




The following properties enable high-level reasoning using the point-wise extension combinators defined
above; the proofs of these and more can be found in Appendix C:

([q f ; β→γ t ] × g);EvalHβ,γ = [q×r (f × g);EvalKβ,γ ; γ t ]

f ;[r g ; α t ] = [q f ;g ; α t ]

[q [q f ; α t ] ; α u ] = [q f ; α t ;u ]

f ;(g1 ⊞α g2) = f ;g1 ⊞α f ;g2

((g1 ⊞β→γ g2) × h);EvalHβ,γ = ((g1 × h);EvalHβ,γ) ⊞γ ((g2 × h);EvalHβ,γ)

Examples

Throughout the following examples, we assume an arbitrary but fixed expression monad E.

For zero-ary constructors, the product [[α]]E = [[α1]]
E × · · · × [[α0]]

E of argument types is a zero-ary
product, and therefore the (more precisely: a) terminal object 1.

With Bool defined by data Bool = False — True, we therefore obtain for any monad K:

[[Bool]]K = 1+ 1 and [[Bool]]K = K (1+ 1) .

For the function type Bool → Bool we obtain:

[[Bool → Bool]]K = [[[Bool]]E → [[Bool]]K] and [[Bool → Bool]]K = [[[Bool]]E → [[Bool]]K]

If we define data BoolFun = BF (Bool → Bool), we obtain:

[[BoolFun]]K = [[Bool → Bool]]E = [[[Bool]]E → [[Bool]]E]

3Note that the transformation t has to be mentioned in
h

q

f ;
α

t
i

without type argument, since it will be instantiated

as ta : K a → H a at different types a.
Also note that we put the subscript q not close to the box, but after the opening parenthesis, since q is the type

“before f ”.
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and

[[BoolFun]]K = K [[[Bool]]E → [[Bool]]E] .

Expanding these one step further:

[[Bool → Bool]]K = [[[Bool]]E → [[Bool]]K] = [E (1+ 1) → (1+ 1)]
[[BoolFun]]K = [[[Bool]]E → [[Bool]]E] = [E (1+ 1) → E (1+ 1)]

and:
[[Bool → Bool]]K = [[[Bool]]E → [[Bool]]K] = [E (1+ 1) → K (1+ 1)]

[[BoolFun]]K = K [[[Bool]]E → [[Bool]]E] = K [E (1+ 1) → E (1+ 1)]

4.2 Organisation of the Semantic Functions

While in strict languages, in the rewriting semantics only values can be substituted for variables, and
analogously only values need to be bound to variables by the valuations in the denotational semantics,
we are here targeting non-strict languages, where the operational semantics can substitute arbitrary
expressions for variables, and therefore, analogously, the type of the denotational variable semantics
has to coincide with that of the expression semantics. The object associated with a variable is therefore
the E-image of the object that interprets the variable’s type.

For the sake of conciseness and readability, we abbreviate the object corresponding to the type of
a variable v by

vE := [[type(v)]]E

and also introduce similar notation for each set V of variables:

VE := Πv : V • [[type(v)]]E

Since we want the reduction rules to translate into semantic equations, both sides of a rule always
have to be interpreted in a compatible way; since the reduction rules do not preserve all free variables,
we have to externally impose a source object for the semantic morphisms.

Therefore, given a variable set V, we define the semantics of an expression e of type α with FV(e) ⊆
V as a morphism from the product corresponding to the variable set V to the object corresponding to
α:

[[e]]EV,α : VE → [[α]]E

(When the type α is clear from the context, we write [[e]]EV instead of [[e]]EV,α, and analogously for the
other semantics functions.)

For each matching m of type α, we define its semantics as a morphism in the Kleisli category for
M from the variables to the result type:

[[m]]MV,α : VE → [[α]]M

Finally, to each pattern p of type α, we associate a morphism in the Kleisli category of M from the
object used for expression semantics of type α to the object corresponding to the set of free variables
of the pattern:

[[p]]Pα : [[α]]E → M (FV(p)E)

Constructor pattern semantics have to be “strict” as can be seen from the first occurrence of ⊙M in
the corresponding clause in Fig. 4.

The definitions for all three semantics functions are listed in Fig. 4.
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Pattern semantics:

[[p]]Pα : [[α]]E → M (FV(p)E)

[[v ]]P = returnM
vE

[[c(p1, . . . , pn)]]P = lift[[τ ]] ⊙M c̃E ⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

for c : α1 × · · · × αn → τ .
The target type here is isomorphic to M (Πv : FV(p) • [[type(v)]]E);
for the sake of conciseness we consider these two types as identified.

Expression semantics:

[[e]]EV,α : VE → [[α]]E

[[v ]]EV = proj
E

V≻{v}

[[c(e1, . . . , en)]]EV = 〈[[e1]]
E
V , . . . , [[en ]]EV〉;c

E
;returnE

[[α]]E

[[f a]]EV,γ = 〈[[f ]]EV,β→γ , [[a]]EV,β〉;EvalEβ,γ

[[{m }]]EV,α = [VE [[m]]MV,α ; α extract ]

[[⊘α]]EV = [VE termC
VE ; α zeroM

;extract ]

Matching semantics:

[[m]]MV,α : VE → [[α]]M

[[↿e↾]]MV,α = [VE [[e]]EV ; α lift ]

[[ α]]MV,α = [VE termC
VE ; α zeroM ]

[[a ⊲ m]]MV,γ = 〈[[m]]MV,β→γ , [[a]]EV,β〉;EvalMβ,γ

[[m1 m2]]
M
V,α = [[m1]]

M
V,α ⊞α[[m2]]

M
V,α

[[p ⇒ m]]MV,β→γ = Λ
(
(proj

E

V≻U × [[p]]Pβ) ; strengthLM
UE,FV(p)E ⊡M

γ [[m]]MU⊕FV(p),γ

)

where U = V \ FV(p), and a product rearrangement morphism is
again omitted

Figure 4: PMC semantics

5 Soundness of the Core Reduction Rules

For the core reduction rules of PMC listed in Fig. 5 (see [Kahl 2004] and Appendix B for more
explanation), we prove the following soundness result in Appendix D:

Theorem 5.1 All core reduction rules listed in Fig. 5 are sound at arbitrary types.

Here is a quick summary of which assumptions were crucial for the proofs to succeed; the detailed
proofs, to be found in Appendix D, mostly proceed at the level of the semantics definitions of Fig. 4,
thanks to the properties of the “pointwise extensions” operators ; α and ⊞α listed in Sect. 4.1.

• ( ) relies on zeroM
τ being a left-unit for plusMτ .

• (⊲ ) relies crucially on the type-dependent, recursive definition of ⊞.
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m −→
M

m ( ) e ⊲ (m1 m2) −→
M

(e ⊲ m1) (e ⊲ m2) (⊲ )

{ } −→
E

⊘ ({ }) { ↿e↾ } −→
E

e ({ ↿↾ })

⊘ e −→
E

⊘ (⊘@) {m } a −→
E

{ a ⊲ m } ({ }@)

e ⊲ −→
M

(⊲ ) a ⊲ ↿e↾ −→
M

↿e a↾ (⊲↿↾)

a ⊲ v ⇒ m −→
M

m[v\a] (⊲v)

d(e1, . . . , ek ) ⊲ c(p1, . . . , pn) ⇒ m −→
M

if c 6= d or k 6= n (d ⊲ c)

c(e1, . . . , en) ⊲ c(p1, . . . , pn) ⇒ m −→
M

e1 ⊲ p1 ⇒ · · · en ⊲ pn ⇒ m (c ⊲ c)

if FV(c(e1, . . . , en)) ∩ FV(c(p1, . . . , pn)) = {}

Figure 5: PMC core reduction rules

• ({ }) relies on compositionality for ; α.

• ({ ↿↾ }) is because liftτ ;extractτ = idτ

• ({ }@) and (⊲↿↾) are both a reflection of the symmetry of the rules for supply and application,
as well as commutativity of ⊞ and Eval.

• (⊘@) and (⊲ ) rely on the same properties as ({ }@) and (⊲↿↾), but also on the definition of ⊘
and at function types, which reflect their being defined “pointwise”.

• (⊲v) corresponds to β-reduction in λ-calculi, and relies on standard categorical and monadic
properties.

• (c ⊲ c) relies crucially on the fact that cE
;c̃E = returnM

E [[α]]E→[[τ ]], as well on returnM
a

;extracta =

returnE
a , and on Λ being able to curry multiple variables.

• (d ⊲ c) relies on dE
;c̃E = termC

[[β]]E
;zeroM

[[α]]E
for d 6= c, and on propagation of zeroM by strength.

6 Using Different Monad Instances

Depending on the choice of monads E and M, additional rules become sound. For deterministic
functional programming, [Kahl 2004] proposes a rule that turns expression matchings into left-zeros
for alternative, and so essentially prohibits backtracking (and non-deterministic choice):

↿e↾ m −→
M

↿e↾ (↿↾ )

For the case where an empty expression is matched against a constructor pattern, [Kahl 2004] offers
two different right-hand sides:

• The first rule corresponds to interpreting the empty expression as equivalent to non-termination,
as usual in Haskell:

⊘ ⊲ c(p1, . . . , pn) ⇒ m −→
M

↿ ⊘ ↾ (⊘ ⊲ c → ⊘)

• The second rule corresponds to interpreting the empty expression as propagating the exception
of matching failure as in the approach proposed in [Erwig, Jones 2001], this rule “resurrects”
that failure:

⊘ ⊲ c(p1, . . . , pn) ⇒ m −→
M

(⊘ ⊲ c → )
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For each of these two variants of deterministic functional programming, we now show a corresponding
bimonadic semantics, and then go on to explore more general monads.

6.1 Preliminaries: The Haskell Monad H

Haskell uses a non-strict cpo semantics where all objects have a least element undefined, but morphisms
need not preserve this least element.

Since we need access to that least element from our semantics, it makes sense factor this out and
consider Haskell as based on an appropriate category of “potentially unboxed types”. Dcpos, i.e.,
directed complete posets (which need not have a least element) form a cartesian closed category that
is also closed under finite sums [Gunter 1985], and therefore serve our purpose nicely.

Types considered as expression types in Haskell do have the least element undefined, and we
consider this to be added by the “Haskell monad” H, which we therefore define to be the lifting
monad, a special case of monad coproduct:

H := ( )⊥ = id + 1
We denote the two natural coproduct injections as returnH and bottom, so we have:

returnH
α : α → H α

bottomα : 1→ H α

6.2 Haskell

For standard Haskell semantics, we choose the above Haskell monad H as the expression monad E := H,
and complete this to a bimonadic setting as in Setting 3.2.2 with M = E+1, choosing emptyE : 1→ E
as emptyE = bottom, so that it maps failure to ⊥. As described in Setting 3.2.2, lift is then the first
monad coproduct injection, from E to M, and zeroM is the second monad coproduct injection.

Since E = H = id+1, undefined computations propagate as a second left-zero through the matching
monad, i.e., for any F : α → M β and G : α → β:

(bottomα;liftα) ⊙M F = bottomβ ;liftβ (1)

〈G , termα
;bottomγ ;liftγ〉;strengthLM

β,γ = termα
;bottomβ×γ ;liftβ×γ (2)

(bottomα;liftα) ⊡M
α F = bottomβ ;liftβ (3)

This corresponds to the approaches used by Tullsen [Tullsen 2000] and Harrison et al. [Harrison,
Sheard+ 2002; Harrison, Kieburtz 2005] which all essentially employ the Maybe monad for this kind
of purpose.

This setting also makes the rules (↿↾ ) and (⊘⊲c → ⊘) sound (proofs are in Appendix D.4), which
proves that PMC⊘ as defined in [Kahl 2004] appropriately implements the semantics of Haskell.

6.3 Matching Failure as Exception

To achieve a semantics that is consistent with Erwig and Peyton Jones’ proposal to treat matching
failure as exception that can be caught by other matching alternatives [Erwig, Jones 2001], ⊘ needs
to be a zero for the expression monad E, which we can chose as E = H + 1.

If we complete this via Setting 3.2.1 with M = E, then this equates the semantics of and ↿ ⊘ ↾,
and makes rule (⊘ ⊲ c → ) sound, see Appendix D.5 for the proof.
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But this also makes the rule (↿↾ ), which corresponds to (deterministic) functional programming,
unsound, since it introduces inconsistencies, e.g., with semantics-level equations:

⊘ = { ↿ ⊘ ↾ } = { ↿ ⊘ ↾ ↿42↾ }
!
= { ↿42↾ } = { ↿42↾ } = 42

So with this semantics, we cannot use the general rule (↿↾ ), but only restricted rules, e.g.:

↿c(eq , . . . , en)↾ m −→
M

↿c(eq , . . . , en)↾ (↿c↾ )

Note that the (mechanised) confluence proof described in [Kahl 2003; Kahl 2004] implies that = ↿⊘↾

is not a consequence of PMC , which results from adding (↿↾ ) and (⊘ ⊲ c → ) to the core rules.
This shows that the semantics considered here is not fully abstract for PMC . On the other hand, the
calculus resulting from using (↿c↾ ) instead of (↿↾ ) (and possibly adding also ↿⊘ ↾ −→

M
) seems

to be a more natural fit to the understanding behind Erwig and Peyton Jones’ proposal [Erwig, Jones
2001], since it really makes sure that exceptions are “caught” in the closest available alternative.

6.4 Functional-Logic Programming

Lazy functional-logic programming (FLP) extends lazy functional programming with logic variables
and non-deterministic choice and the ability that any expression evaluates to “multiple values”. This
kind of choice can be modelled for example using a list monad, a tree monad, or the LogicT monad of
Kiselyov et al. [Kiselyov, Shan+ 2005].

By using this kind of monad both for M, where choice originates in PMC, and, following Setting
3.2.1 with E = M, also for the expression monad, to which it needs to propagate in FLP, we obtain
an appropriate semantics for the fragment of FLP that can be expressed with the syntax of PMC as
presented here. The pointwise extension behaviour of alternative in our semantics actually exactly
corresponds to the way choice is treated in the functional-logic programming language Curry [Hanus
1997; Hanus+ 2006]. (To obtain the full expressive power of FLP, we need to extend the pattern syntax
with the third alternative of call-by-value variables — the details are beyond the scope of the present
paper.)

6.5 Choice

A particularly interesting situation arises when the list monad is chosen for M, but just partiality for
E. Then we get all possible matches, yet we must then return only a single valid result. This can be
very useful in some situations where we have either an intrinsic measurement of “better” choices, or
where choice is inevitable but inessential. The same algorithm, Gaussian Elimination, can serve as
an example of both of these situations. [Carette 2006] shows how for many different domains, there
is an intrinsic notion of “better than” for the purposes of pivot choice. On the other hand, [Tucker,
Zucker 2004] shows that either multi-valuedness or non-determinism are necessary ingredients even for
single-valued functions (like Gaussian Elimination) if one wishes to be fully abstract, in other words
representation-independent. Correspondingly, the “better than” notions of [Carette 2006] are generally
representation-dependent. Having a convenient programming language where we can disentangle
these issues would clearly be beneficial. We believe that this could allow versions of some numerical
algorithms, in the style of [Carette, Kiselyov 2005], to be made even more generic.

7 Conclusion and Outlook

Using a monad, most typically Maybe, for the semantics of pattern matching in Haskell-like languages
has been proposed previously [Tullsen 2000; Harrison, Sheard+ 2002; Harrison, Kieburtz 2005].
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Since PMC offers a finer-grained, more systematic separation of pattern matching aspects from
other expression evaluation aspects, choosing to interpret the two syntactic categories with separate
monads is an obvious choice — the alternative of using a monad transformer deserves further explo-
ration.

From this starting point, defining a general, monadic semantics for PMC required the resolution
of two fine technical points:

• the necessity to use different definitions of the function type semantics for expressions and
matchings, and

• the necessity to provide the corresponding “pointwise extensions” to the operations in the base
monads.

As a result, the soundness of all the core reduction rules of the two PMC calculi defined in [Kahl 2004]

is obtained assuming only remarkably light coupling of the two monads through the laws assumed for
extract and lift.

The only common rule of the two calculi defined in [Kahl 2004] that is left out of the set of core
rules is the rule (↿↾ ) expressing that the first success of a matching will be its only result; this
obviously would exclude monads with a non-determinism or backtracking component from being used
for matching semantics. By not including such an assumption, we keep our bi-monadic PMC semantics
open to uses also in functional-logic programming, which is one of the topics we plan to explore in
more depth in the future, and we are extending our current prototype Haskell implementation of PMC
reduction and of the semantics presented in the paper to serve as a test-bed for exploration in this
direction.

It is also quite intriguing that by just taking two list monads, one gets “all” answers out of programs
written as pure functions, if the patterns turned out to be overlapping. Generalising this further, to
say tree monads, is definitely worth exploring.

Finally we would like to use the given semantics as justification for transformation rules that are
useful for compilation of non-strict pattern matching.
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A Monad Laws

A.1 Categories

A category consists of a class of object, a class of morphisms, a partial composition operation on
morphisms, and an operation id assigning each object an identity morphism.

Each morphism has exactly one source and target object; we write f : a → b for a morphism from
a to b.

Composition of morphisms f : a → b and g : b′ → c is defined iff b = b′, and then (f ;g) : a → c;
composition is associative.

id produces identities for composition: ida ;f = f = f ;idb .

A.2 Endofunctors

An endofunctor F maps objects to objects and morphisms to morphisms and preserves composition
and identities; if f : a → b, then F f : F a → F b.

A natural transformation t from functor F to functor G is a “polymorphic morphism” ta : F a →
G a satisfying the naturality condition ta ;G f = F f ;tb .

A.3 Monads

A monad is a triple (M , returnM , joinM ) consisting of an endofunctor M together with two natural
transformations

returnM
a : a → M a joinM

a : M (M a) → M a

satisfying the following additional laws:

joinM
a

;returnM
a = idM a

M returnM
a

;joinM
a = idM a

M joinM
a

;joinM
a = joinM

M a
;joinM

a

A.4 Strong Monads

Assuming a cartesian category with terminal object 1, there are natural isomorphisms

ra : (1× a) → a

assoca,b,c : (a × b) × c → a × (b × c)

A strong monad M is a monad in a cartesian category that has a natural transformation

strengthLM
a,b : a × M b → M (a × b)

satisfying (see [Moggi 1991b] for diagrams and more explanation):

rM a = strengthLM1,a
;M ra

strengthLM
a×b,c

;M assoca,b,c = assoca,b,M c
;(ida × strengthLM

b,c);strengthLM
a,b×c

returnM
a×b = (ida × returnM

b );strengthLM
a,b

(ida × joinM
b );strengthLM

a,b = strengthLM
a,M b

;M strengthLM
a,b

;joinM
a×b
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Using the isomorphism (swapa,b from a × b to b × a), we can define the “swapped version”

strengthRM
a,b : M a × b → M (a × b)

strengthRM
a,b = swapM a,M b

;strengthLM
b,a

;M (swapM b,a)

This allows us to define ⊗M : (M a × M b) → M (a × b) via

⊗M = strengthRM
a,b ⊙M strengthLM

a,b

Notice that this chooses to “execute the first computation first” — this is in general different from
proceeding the other way round.

This can be folded over ordered tuples to give

⊗
: (M a1 × · · · × M an) → M (a1 × · · · × an)

⊗
= (⊗× id(M a3×···×M an )); · · · ;⊗

B PMC Core Reduction Rules

Here, we repeat from [Kahl 2004] the set of rules that implement the usual pattern matching semantics
of non-strict functional programming languages by allowing corresponding reduction of PMC expres-
sions as they arise from translating functional programs. In particular, we do not include extensionality
rules.

Formally, we define two redex reduction relations:

• for expressions, −→
E

: Expr ↔ Expr, and

• for matchings, −→
M

: Match ↔ Match.

These are the smallest relations including the rules listed below and (↿↾ ) and either (⊘ ⊲ c → ⊘) or
(⊘⊲c → ) (mentioned in Sect. 6). The resulting rewriting system contains a mix of first-order rules,
rule schemata, and second-order rules; the first author described a direct confluence proof mechanised
in Isabelle and a deterministic normalising strategy (via reduction to strong head normal form) in
[Kahl 2004]. (That proof has since also be performed for the core rule set.)

B.1 Failure and Returning

Failure is the (left) unit for :

m −→
M

m ( )

A matching abstraction where all alternatives fail can be understood as representing an ill-defined
case — this is reduced to the “empty expression”:

{ } −→
E

⊘ ({ })

Matching abstractions built from expression matchings are equivalent to the contained expression:

{ ↿e↾ } −→
E

e ({ ↿↾ })
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B.2 Application and Argument Supply

Application of a matching abstraction reduces to argument supply inside the abstraction:

{m } a −→
E

{ a ⊲ m } ({ }@)

Argument supply to an expression matching reduces to function application inside the expression
matching:

a ⊲ ↿e↾ −→
M

↿e a↾ (⊲↿↾)

No matter which of our two interpretations of the empty expression we choose, it absorbs arguments
when used as function in an application:

⊘ e −→
E

⊘ (⊘@)

Analogously, failure absorbs argument supply:

e ⊲ −→
M

(⊲ )

Argument supply distributes into alternatives:

e ⊲ (m1 m2) −→
M

(e ⊲ m1) (e ⊲ m2) (⊲ )

B.3 Pattern Matching

Everything matches a variable pattern; this matching gives rise to substitution:

a ⊲ v ⇒ m −→
M

m[v\a] (⊲v)

Matching constructors match, and the proviso in the following rule can always be ensured via α-
conversion (for this rule to make sense, linearity of patterns is important):

c(e1, . . . , en) ⊲ c(p1, . . . , pn) ⇒ m −→
M

e1 ⊲ p1 ⇒ · · · en ⊲ pn ⇒ m

if FV(c(e1, . . . , en)) ∩ FV(c(p1, . . . , pn)) = {} (c ⊲ c)

Matching of different constructors fails:

d(e1, . . . , ek ) ⊲ c(p1, . . . , pn) ⇒ m −→
M

if c 6= d or k 6= n (d ⊲ c)

C Combinator Lemmas

Lemma C.1 For g : r → [[α]]M, we have: returnK
r ⊡K

α g = g

Proof : For constructed types, we have: returnK
r ⊡K

τ g = returnK
r ⊙M g = g .

For function types:

returnK
r ⊡M

β→γ g

= Λ
(
((returnK

r × id[[β]]E);strengthRK
r ,[[β]]E) ⊡K

γ ((g × id[[β]]E);EvalKβ,γ)
)

def. ⊡β→γ

= Λ
(
returnK

r×id
[[β]]E

⊡K
γ ((g × id[[β]]E);EvalKβ,γ)

)
strength preserves return

= Λ
(
((g × id[[β]]E);EvalKβ,γ)

)
induction hyp.

= g Λ is nat. bijection
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Lemma C.2 For f : p → q and g : q → K r and h : r → [[α]]M, we have (f ;g) ⊡K
α h = f ;(g ⊡K

α h).

Proof : For constructed types: (f ;g) ⊡K
τ h = (f ;g) ⊙M h = f ;(g ⊙M h) = f ;(g ⊡K

τ h)

For function types:

(f ;g) ⊡M
β→γ h

= Λ
(
((f ;g × id[[β]]E);strengthRK

r ,[[β]]E) ⊡K
γ ((h × id[[β]]E);EvalKβ,γ)

)
def. ⊡β→γ

= Λ
(
((f × id[[β]]E);(g × id[[β]]E);strengthRK

r ,[[β]]E) ⊡K
γ ((h × id[[β]]E);EvalKβ,γ)

)
functoriality of ×

= f ;Λ
(
((g × id[[β]]E);strengthRK

r ,[[β]]E) ⊡K
γ ((h × id[[β]]E);EvalKβ,γ)

)
naturality of Λ

= f ;(g ⊡K
β→γ h) def. ⊡β→γ

Lemma C.3 f ;[r g ; α t ] = [q f ;g ; α t ] for f : q → r .

Proof : By induction over the number of argument types in α.

Base case (constructed types): using the definition of [ ; τ ]: f ;[r g ; τ t ] = f ;g ;t[[τ ]] = [q f ;g ; τ t ].

Induction step: Assume α = β → γ:

f ;[r g ; β→γ t ]

= f ;Λ[r×[[β]]E (g × id[[β]]E);EvalKβ,γ ; γ t ] definition of [ ; β→γ ]

= Λ
(
(f × id[[β]]E);[q×[[β]]E (g × id[[β]]E);EvalKβ,γ ; γ t ]

)
naturality of Λ

= Λ[q×[[β]]E (f × id[[β]]E);(g × id[[β]]E);EvalKβ,γ ; γ t ] induction hypothesis

= Λ[q×[[β]]E ((f ;g) × id[[β]]E);EvalKβ,γ ; γ t ] functoriality of ×

= [q f ;g ; β→γ t ] definition of [ ; β→γ ]

Lemma C.4 Assume f : q → [[β → γ]]K and g : r → [[β]]E, and let t be a transformation from K to
H. Then:

([q f ; β→γ t ] × g);EvalHβ,γ = [q×r (f × g);EvalKβ,γ ; γ t ]

Proof :

([q f ; β→γ t ] × g);EvalHβ,γ

= (Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ] × g);EvalHβ,γ def. of [ ; β→γ ]

= (idq × g);(Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ] × id[[β]]E);EvalHβ,γ properties of ×

= (idq × g);[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ] definition of Eval

= [q×r (f × g);EvalKβ,γ ; γ t ] Lemma C.3

Lemma C.5 f ;(g1 ⊞α g2) = f ;g1 ⊞α f ;g2

Proof : By induction over the number of argument types in α.

Base case: If α is a constructed type τ , the definition of ⊞τ and properties of × immediately give us:

f ;(g1 ⊞τ g2) = f ;〈g1, g2〉;plusM = 〈f ;g1, f ;g2〉;plusM = f ;g1 ⊞τ f ;g2
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Induction step: Assume α = β → γ:

f ;(g1 ⊞β→γ g2)

= f ;Λ
(
(g1 × id[[β]]E);EvalMβ,γ ⊞γ(g2 × id[[β]]E);EvalMβ,γ

)
definition of ⊞β→γ

= Λ((f × id[[β]]E);
(
(g1 × id[[β]]E);EvalMβ,γ ⊞γ(g2 × id[[β]]E);EvalMβ,γ

)
) naturality of Λ

= Λ
(
(f × id[[β]]E);(g1 × id[[β]]E);EvalMβ,γ ⊞γ(f × id[[β]]E);(g2 × id[[β]]E);EvalMβ,γ

)
induction hypothesis

= Λ
(
(f ;g1 × id[[β]]E);EvalMβ,γ ⊞γ(f ;g2 × id[[β]]E);EvalMβ,γ

)
functoriality of ×

= (f ;g1) ⊞β→γ(f ;g2) definition of ⊞β→γ

Lemma C.6 If f : q → [[α]]K, then [q f ; α id ] = f .

Proof : By induction over the number of argument types in α.

Base case: If α is a constructed type τ , the definition of [ ; τ ] immediately gives us:

[q f ; τ id ] = f ;id[[τ ]] = f

Induction step: Assume α = β → γ:

[q f ; β→γ id ] = Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ id ] definition of [ ; β→γ ]

= Λ((f × id[[β]]E);EvalKβ,γ) induction hypothesis

= Λ((f × id[[β]]E);eval[[[β]]E→[[γ]]K]) definition of Eval,

= f Λ is nat. bijection

Lemma C.7 Assume two transformations t with ta : K a → H a and u with ua : H a → G a.

[q [q f ; α t ] ; α u ] = [q f ; α t ;u ]

Proof : By induction over the number of argument types in α.

Base case: assume α is a constructed type τ :

[q [q f ; τ t ] ; τ u ] = [q f ;t[[τ ]] ; τ u ] definition of [ ; τ ]

= f ;t[[τ ]]
;u[[τ ]] definition of [ ; τ ]

= f ;(t ;u)[[τ ]] composition of transformations

= [q f ; τ t ;u ] definition of [ ; τ ]

Induction step: Assume α = β → γ:

[q [q f ; β→γ t ] ; β→γ u ]

= Λ[q×[[β]]E ([q f ; β→γ t ] × id[[β]]E);EvalHβ,γ ; γ u ] definition of [ ; β→γ ]

= Λ[q×[[β]]E [q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ] ; γ u ] Lemma C.4

= Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ;u ] induction hypothesis

= [q f ; β→γ (t ;u) ] definition of [ ; β→γ ]
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Lemma C.8 For m : r → [[α]]M, we have termC
q
;zeroM

r ⊡M
α m = [q termC

q ; α zeroM ].

Proof : By definition of [ ; ], we have for constructed types:

termC
q
;zeroM

r ⊡M
τ m = termC

q
;zeroM

r ⊙M m = termC
q
;zeroM

[[τ ]]M
= [q termC

q ; τ zeroM ]

For function types:

termC
q
;zeroM

r ⊡M
β→γ m

= Λ
(
((termC

q
;zeroM

r × id[[β]]E);strengthRK
r ,[[β]]E) ⊡K

γ ((m × id[[β]]E);EvalKβ,γ)
)

def. ⊡β→γ

= Λ
(
(termC

q×[[β]]E
;zeroM

r×[[β]]E
) ⊡K

γ ((m × id[[β]]E);EvalKβ,γ)
)

strength preserves zeroM

= Λ[q×[[β]]E termC
q×[[β]]E

; γ zeroM ] induction hyp.

= Λ[q×[[β]]E (termC
q × id[[β]]E);Eval1β,γ ; γ zeroM ] terminality

= [q termC
q ; β→γ zeroM ] def. [ ; β→γ ]

Lemma C.9 [q termC
q ; α zeroM ] ⊞α g = g

Proof : The base case follows directly from zeroM being a unit for plus:

[q termC
q ; τ zeroM ]⊞τ g = 〈termC

q
;zeroM

[[τ ]], g〉;plusM = g

Induction step:

[q termC
q ; β→γ zeroM ] ⊞β→γ g

= Λ
(
([q termC

q ; β→γ zeroM ] × id[[β]]E);EvalMβ,γ ⊞γ(g × id[[β]]E);EvalMβ,γ

)
definition of ⊞β→γ

= Λ
(
[q×[[β]]E (termC

q × id[[β]]E);Eval1β,γ ; γ zeroM ] ⊞γ(g × id[[β]]E);EvalMβ,γ

)
Lemma C.4

= Λ
(
[q×[[β]]E termC

q×[[β]]E
; γ zeroM ] ⊞γ(g × id[[β]]E);EvalMβ,γ

)
terminality

= Λ
(
(g × id[[β]]E);EvalMβ,γ

)
induction hypothesis

= g Λ is nat. bijection

Lemma C.10 Assume g1, g2 : q1 → [[β → γ]]M and h : q2 → [[β]]E. Then:

((g1 ⊞β→γ g2) × h);EvalHβ,γ = ((g1 × h);EvalHβ,γ) ⊞γ ((g2 × h);EvalHβ,γ)

Proof: ((g1 ⊞β→γ g2) × h);EvalHβ,γ

= (Λ
(
(g1 × id[[β]]E);EvalMβ,γ ⊞γ(g2 × id[[β]]E);EvalMβ,γ

)
× h);EvalHβ,γ definition of ⊞β→γ

= (idq1 × h);
(
(g1 × id[[β]]E);EvalMβ,γ ⊞γ(g2 × id[[β]]E);EvalMβ,γ

)
props. of ×, Eval

=
(
(g1 × h);EvalMβ,γ ⊞γ(g2 × h);EvalMβ,γ

)
Lemma C.5
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D Correctness of the Core Reduction Rules

For showing the correctness of the core reduction rules, we rely heavily on the lemmas shown in
appendix C; they allow us to perform the proofs as direct calculation at the level of the combinators
used in the semantics definitions.

D.1 Failure and Returning

Rule ({ }): [[{ }]]EV,α = [VE [[ ]]MV,α ; α extract ] semantics of { }

= [VE [VE termC
VE ; α zeroM ] ; α extract ] semantics of

= [VE termC
VE ; α zeroM

;extract ] Lemma C.7

= [[⊘]]EV,α semantics of ⊘

Rule ( ): [[ m]]MV,α = [[ ]]MV,α ⊞α[[m]]MV,α semantics of

= [VE termC
VE ; α zeroM ]⊞α[[m]]MV,α semantics of

= [[m]]MV,α Lemma C.9

Rule ({ ↿↾ }): [[{ ↿e↾ }]]EV,α = [VE [[↿e↾]]MV,α ; α extract ] semantics of { }

= [VE [VE [[e]]EV ; α lift ] ; α extract ] semantics of ↿ ↾

= [VE [[e]]EV ; α lift;extract ] Lemma C.7

= [VE [[e]]EV ; α id ] (lift;extract)

= [[e]]EV,α Lemma C.6

D.2 Application and Argument Supply

Rule ({ }@): [[{m } a]]EV,γ = 〈[[{m }]]EV,β→γ , [[a]]EV,β〉;EvalEβ,γ semantics of appl.

= 〈[VE [[m]]MV,β→γ ; β→γ extract ], [[a]]EV,β〉;EvalEβ,γ semantics of { }

= [VE 〈[[m]]MV,β→γ , [[a]]EV,β〉;EvalMβ,γ ; γ extract ] Lemma C.4

= [VE [[a ⊲ m]]MV,γ ; γ extract ] semantics of ⊲

= [[{ a ⊲ m }]]EV,γ semantics of { }

Rule (⊘@): [[⊘ e]]EV,γ = 〈[[⊘]]EV,β→γ , [[e]]EV,β〉;EvalEβ,γ semantics of appl.

= 〈[VE termC
VE ; β→γ zeroM

;extract ], [[e]]EV,β〉;EvalEβ,γ semantics of ⊘

= [VE 〈termC
VE , [[e]]EV,β〉;Eval1β,γ ; γ zeroM

;extract ] Lemma C.4

= [VE termC
VE ; γ zeroM

;extract ] terminality

= [[⊘]]EV,γ semantics of ⊘

Rule (⊲↿↾): [[a ⊲ ↿e↾]]MV,γ = 〈[[↿e↾]]MV,β→γ , [[a]]EV,β〉;EvalMβ,γ semantics of ⊲

= 〈[VE [[e]]EV ; β→γ lift ], [[a]]EV,β〉;EvalMβ,γ semantics of ↿ ↾

= [VE 〈[[e]]EV,β→γ , [[a]]EV,β〉;EvalEβ,γ ; γ lift ] Lemma C.4

= [VE [[e a]]EV ; γ lift ] semantics of application

= [[↿e a↾]]MV,γ semantics of ↿ ↾
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Rule (⊲ ): [[e ⊲ ]]MV,γ = 〈[[ ]]MV,β→γ , [[e]]EV,β〉;EvalMβ,γ semantics of ⊲

= 〈[VE termC
VE ; β→γ zeroM ], [[e]]EV,β〉;EvalMβ,γ semantics of

= [VE 〈termC
VE , [[e]]EV,β〉;Eval1β,γ ; γ zeroM ] Lemma C.4

= [VE termC
VE ; γ zeroM ] terminality

= [[ ]]MV,γ semantics of

Rule (⊲ ):

[[e ⊲ (m1 m2)]]
M
V,γ = 〈[[m1 m2]]

M
V,β→γ , [[e]]EV,β〉;EvalMβ,γ semantics of ⊲

= 〈([[m1]]
M
V,β→γ ⊞β→γ [[m2]]

M
V,β→γ), [[e]]EV,β〉;EvalMβ,γ semantics of

= (〈[[m1]]
M
V,β→γ , [[e]]EV,β〉;EvalHβ,γ) ⊞γ Lemma C.10 and C.5

(〈[[m2]]
M
V,β→γ , [[e]]EV,β〉;EvalHβ,γ)

= [[e ⊲ m1]]
M
V,γ ⊞γ [[e ⊲ m2]]

M
V,γ semantics of ⊲

= [[(e ⊲ m1) (e ⊲ m2)]]
M
V,γ semantics of

D.3 Pattern Matching

First we show a simplification of the semantics of pattern supply; this will abbreviate the correctness
proofs of the pattern matching rules:

Lemma D.1 With U = V \ FV(p),

[[e ⊲ p ⇒ m]]MV,γ = 〈proj
E

V≻U , [[e]]EV,β
;[[p]]Pβ〉;strengthLM

UE,FV(p)E ⊡M
γ [[m]]MU⊕FV(p),γ .

Proof :

[[e ⊲ p ⇒ m]]MV,γ

= 〈[[p ⇒ m]]MV,β→γ , [[e]]EV,β〉;EvalMβ,γ semantics of ⊲

= 〈Λ((proj
E

V≻U × [[p]]Pβ);strengthLM
UE,FV(p)E ⊡M

γ [[m]]MU⊕FV(p),γ), [[e]]EV,β〉;EvalMβ,γ semantics of ⇒

= 〈idVE , [[e]]EV,β〉;(proj
E

V≻U × [[p]]Pβ);strengthLM
UE,FV(p)E ⊡M

γ [[m]]MU⊕FV(p),γ props. of ×, Eval

= 〈proj
E

V≻U , [[e]]EV,β
;[[p]]Pβ〉;strengthLM

UE,FV(p)E ⊡M
γ [[m]]MU⊕FV(p),γ properties of ×

Rule (⊲v): Let U = V \ {v}), and assume UE × [[β]]E = VE:

[[a ⊲ v ⇒ m]]MV,γ

= 〈proj
E

V≻U , [[a]]EV,β
;[[v ]]Pβ〉;strengthLM

UE,FV(v)E ⊡M
γ [[m]]MU⊕FV(v),γ Lemma D.1

= 〈proj
E

V≻U , [[a]]EV,β
;returnM

[[β]]E
〉;strengthLM

UE,[[β]]E ⊡M
γ [[m]]MU⊕{v},γ variable pattern semantics

= 〈proj
E

V≻U , [[a]]EV,β〉;returnM
UE×[[β]]E

⊡M
γ [[m]]MV,γ strengthL, properties

= 〈proj
E

V≻U , [[a]]EV,β〉;[[m]]MV,γ Lemma C.1

= [[m[v\a]]]MV,γ induction over constr. of m
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Rule (c ⊲ c): For simplifying the presentation, we restrict ourselves to two constructor arguments in
the matching rule (let U = V \ FV(c(p1, p2)) and W = V \ FV(p1) and U ′ = (W ⊕ FV(p1)) \ FV(p2)):

[[c(e1, e2) ⊲ c(p1, p2) ⇒ m]]MV,γ

= 〈proj
E

V≻U , [[c(e1, e2)]]
E
V,β

;[[c(p1, p2)]]
P
β〉 Lemma D.1

;strengthLM
UE,FV(c(p1,p2))E ⊡M

γ [[m]]MU⊕FV(c(p1,p2)),γ

= 〈proj
E

V≻U semantics of c

, 〈[[e1]]
E
V , [[e2]]

E
V〉;c

E
;returnE

[[β]]E
;lift[[τ ]] ⊙M c̃E ⊙M (([[p1]]

P × [[p2]]
P);⊗M )

〉;strengthLM
UE,FV(c(p1,p2))E ⊡M

γ [[m]]MU⊕FV(c(p1,p2)),γ

= 〈proj
E

V≻U , 〈[[e1]]
E
V , [[e2]]

E
V〉;c

E
;c̃E ⊙M (([[p1]]

P × [[p2]]
P);⊗M )〉 (returnE

;lift), unit of ⊙

;strengthLM
UE,FV(c(p1,p2))E ⊡M

γ [[m]]MU⊕FV(c(p1,p2)),γ

= 〈proj
E

V≻U , 〈[[e1]]
E
V , [[e2]]

E
V〉;([[p1]]

P × [[p2]]
P);⊗M〉 destructor axiom, ⊙ unit

;strengthLM
UE,FV(c(p1,p2))E ⊡M

γ [[m]]MU⊕FV(c(p1,p2)),γ

= 〈proj
E

V≻U , 〈[[e1]]
E
V

;[[p1]]
P, [[e2]]

E
V

;[[p2]]
P〉;⊗M〉 properties of ×

;strengthLM
UE,FV(c(p1,p2))E ⊡M

γ [[m]]MU⊕FV(c(p1,p2)),γ

= 〈proj
E

V≻W , [[e1]]
E
V,β

;[[p1]]
P
β〉;strengthLM

WE,FV(p1)E ⊙M case analysis,
strengthL laws,
suppressed product isom.〈proj

E

W⊕FV(p1)≻U ′ , [[e2]]
E
W⊕FV(p1),β

;[[p2]]
P
β〉

;strengthLM
U ′E,FV(p2)E ⊡M

γ [[m]]MU ′⊕FV(p2),γ

= 〈proj
E

V≻W , [[e1]]
E
V,β

;[[p1]]
P
β〉 Lemma D.1

;strengthLM
WE,FV(p1)E ⊡M

γ [[e2 ⊲ p2 ⇒ m]]MW⊕FV(p1),γ

= [[e1 ⊲ p1 ⇒ e2 ⊲ p2 ⇒ m]]MV,γ Lemma D.1
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Rule (d ⊲ c):

[[d(e1, . . . , ek ) ⊲ c(p1, . . . , pn) ⇒ m]]MV,γ

= 〈proj
E

V≻U , [[d(e1, . . . , ek )]]
E
V,β

;[[c(p1, . . . , pn)]]Pβ〉 Lemma D.1

;strengthLM
UE,FV(c(~p))E ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U semantics of c and d

, 〈[[e1]]
E
V , . . . , [[ek ]]

E
V〉;d

E
;returnE

[[β]]E
;lift[[τ ]] ⊙M c̃E

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U , 〈[[e1]]
E
V , . . . , [[ek ]]

E
V〉;d

E
;c̃E (returnE

;lift), unit of ⊙

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)〉

;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U , 〈[[e1]]
E
V , . . . , [[ek ]]

E
V〉;term

C
[[β]]E

;zeroM
[[α]]E

destructor axiom

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U , termC
VE

;zeroM
FV(c(~p))E

terminality, zeroM property

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= termC
VE

;zeroM
U⊕FV(c(~p))E

⊡M
γ [[m]]MU⊕FV(c(~p)),γ zeroM interaction with strengthL,

= [VE termC
VE ; γ zeroM ] Lemma C.8

= [[ ]]MV,γ semantics of

D.4 Haskell Semantics

The following proofs assume the setting of Sect. 6.2, using the Haskell monad for expressions, i.e.,
E = H, adding, through combination with Setting 3.2.2, only failure for matchings, i.e., M = E + 1,
and extracting failure to the bottom provided by the Haskell monad, i.e., emptyE = bottom.

Rule (↿↾ ):

[[↿e↾ m]]MV,α = [[↿e↾]]MV,α ⊞α[[m]]MV,α semantics of

= [VE [[e]]EV ; α lift ]⊞α[[m]]MV,α semantics of ↿↾

To prove that this equals [[↿e↾]]MV,α, we show the following generalisation:

[q f ; α lift ] ⊞α g = [q f ; α lift ]
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For constructed types, this is easy:

[q f ; τ lift ] ⊞τ g = (f ;liftτ ) ⊞τ g definition of [ ; τ ]

= 〈(f ;liftτ ), g〉;plusM definition of ⊞τ

= f ;liftτ definition of plusE+1, Setting 3.2.2

= [q f ; τ lift ] definition of [ ; τ ]

For function types, we obtain:

[q f ; β→γ lift ]⊞β→γ g

= Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ lift ]⊞β→γ g definition of [ ; β→γ ]

= Λ




(Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ lift ] × id[[β]]E);EvalMβ,γ

⊞γ

(g × id[[β]]E);EvalMβ,γ


 definition of ⊞β→γ

= Λ




[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ lift ]

⊞γ

(g × id[[β]]E);EvalMβ,γ


 definition of Eval

= Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ lift ] induction hyp.

= [q f ; β→γ lift ] definition of [ ; β→γ ]

Rule (⊘ ⊲ c → ⊘):

[[⊘ ⊲ c(p1, . . . , pn) ⇒ m]]MV,γ

= 〈proj
E

V≻U , [[⊘]]EV,τ
;[[c(p1, . . . , pn)]]Pτ 〉 Lemma D.1

;strengthLM
UE,FV(c(~p))E ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U semantics of c and ⊘

, [VE termC
VE ; τ zeroM

;extract ];lift[[τ ]] ⊙M c̃E

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U (zero;extract)

, [VE termC
VE ; τ emptyE ];lift[[τ ]] ⊙M c̃E

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U definition of [ ; τ ] and emptyE

, termC
VE

;bottom[[τ ]]
;lift[[τ ]] ⊙M c̃E

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U (1) from page 17

, termC
VE

;bottomFV(c(~p))E
;liftFV(c(~p))E

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ
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= [VE termC
VE ; γ bottom;lift ] (2), (3) from page 17

= [VE [VE termC
VE ; γ zeroM

;extract ] ; γ lift ] Lemma C.7, def. of emptyE

= [VE [[⊘]]EV ; γ lift ] semantics of ⊘

= [[↿ ⊘ ↾]]MV,γ semantics of ↿↾

D.5 The Setting M = E

The following proof relies on M = E, or, more precisely, on extract;liftτ = id, or even just the following
for all constructed types τ :

zeroM
[[τ ]]

;extract[[τ ]]
;lift[[τ ]] = zeroM

[[τ ]] .

Rule (⊘ ⊲ c → ): We assume that c is a constructor with c : α1 × · · ·αn → τ .

[[⊘ ⊲ c(p1, . . . , pn) ⇒ m]]MV,γ

= 〈proj
E

V≻U , [[⊘]]EV,τ
;[[c(p1, . . . , pn)]]Pτ 〉 Lemma D.1

;strengthLM
UE,FV(c(~p))E ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U semantics of c and ⊘

, [VE termC
VE ; τ zeroM

;extract ];lift[[τ ]] ⊙M c̃E

⊙M (([[p1]]
P × · · · × [[pn ]]P);

⊗
)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U definition of [ ; τ ]

, termC
VE

;zeroM
[[τ ]]

;extract[[τ ]]
;lift[[τ ]] ⊙M c̃E ⊙M (([[p1]]

P × · · · × [[pn ]]P);
⊗

)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U M = E

, termC
VE

;zeroM
[[τ ]] ⊙M c̃E ⊙M (([[p1]]

P × · · · × [[pn ]]P);
⊗

)

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= 〈proj
E

V≻U zeroM is zero of ⊙

, termC
VE

;zeroM
FV(c(~p))E

〉;(strengthLM
UE,FV(c(~p))E) ⊡M

γ [[m]]MU⊕FV(c(~p)),γ

= termC
VE

;zeroM
UE×FV(c(~p))E

⊡M
γ [[m]]MU⊕FV(c(~p)),γ strength preserves zero

= [VE termC
VE ; γ zeroM ] Lemma C.8

= [[ ]]MV,γ semantics of


