Abstract
We propose here a mathematical framework for incremental software construction and controlled software evolution. The framework allows incremental changes of a software system to be described on a high architecture level, but still with mathematical precision so that we can reason about the correctness of the changes. The framework introduces refinement diagrams as a visual way of presenting the architecture of large software systems. Refinement diagrams are based on lattice theory and allow reasoning about lattice elements to be carried out directly in terms of diagrams. A refinement diagram proof will be equivalent to a Hilbert like proof in lattice theory. We show how to apply refinement diagrams and refinement calculus to the incremental construction of large software system. We concentrate on three topics: (i) modularization of software systems with component specifications and the role of information hiding in this approach, (ii) layered extension of software by adding new features one-by-one and the role of inheritance and dynamic binding in this approach, and (iii) evolution of software over time and the control of successive versions of software.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Back, RJ. (2006). Incremental Software Construction with Refinement Diagrams. In: Johnson, M., Vene, V. (eds) Algebraic Methodology and Software Technology. AMAST 2006. Lecture Notes in Computer Science, vol 4019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784180_1
Download citation
DOI: https://doi.org/10.1007/11784180_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35633-2
Online ISBN: 978-3-540-35636-3
eBook Packages: Computer ScienceComputer Science (R0)