Abstract
We propose two characterizations of complexity classes by means of programming languages. The first concerns Logspace while the second leads to Ptime. This latter characterization shows that adding a choice command to a Ptime language (the language WHILE of Jones [1]) may not necessarily provide NPtime computations. The result is close to Cook in [2] who used “auxiliary push-down automata”. Logspace is obtained through a decidable mechanism of tiering. It is based on an analysis of deforestation due to Wadler in [3]. We get also a characterization of NLogspace.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jones, N.D.: LOGSPACE and PTIME characterized by programming languages. Theoretical Computer Science 228, 151–174 (1999)
Cook, S.: Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM 18(1), 4–18 (1971)
Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)
Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 25–42. Springer, Heidelberg (2000)
Bonfante, G., Marion, J.Y., Moyen, J.Y.: On lexicographic termination ordering with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, Springer, Heidelberg (2001)
Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-Interpretations and Small Space Bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer, Heidelberg (2005)
Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110 (1992)
Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundamenta Informaticae 19, 167 (1993)
Leivant, D., Marion, J.Y.: Predicative functional recurrence and poly-space. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 369–380. Springer, Heidelberg (1997)
Leivant, D., Marion, J.Y.: A characterization of alternating log time by ramified recurrence. Theoretical Computer Science 236, 192–208 (2000)
Neergaard, P.: A functional language for logarithmic space. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, Springer, Heidelberg (2004)
Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: Proceedings of the Fourteenth IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 464–473 (1999)
Hofmann, M.: The strength of non size-increasing computation. In: Notices, A.S. (ed.) POPL 2002, vol. 37, pp. 260–269 (2002)
Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. IEEE Computer Society Press, Los Alamitos (2004)
Oitavem, I.: Characterizing nc with tier 0 pointers. Archive for Mathematical Logic 41, 35–47 (2002)
Oitavem, I.: A term rewriting characterization of the functions computable in polynomial space. Archive for Mathematical Logic 41(1), 35–47 (2002)
Jones, N.D.: Computability and complexity, from a programming perspective. MIT Press, Cambridge (1997)
Grädel, E., Gurevich, Y.: Tailoring recursion for complexity. Journal of Symbolic Logic 60(3), 952–969 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonfante, G. (2006). Some Programming Languages for Logspace and Ptime . In: Johnson, M., Vene, V. (eds) Algebraic Methodology and Software Technology. AMAST 2006. Lecture Notes in Computer Science, vol 4019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784180_8
Download citation
DOI: https://doi.org/10.1007/11784180_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35633-2
Online ISBN: 978-3-540-35636-3
eBook Packages: Computer ScienceComputer Science (R0)