Skip to main content

Providing Full Awareness to Distributed Virtual Environments Based on Peer-to-Peer Architectures

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

In recent years, large scale distributed virtual environments (DVEs) have become a major trend in distributed applications, mainly due to the enormous popularity of multiplayer online games in the entertainment industry. Since architectures based on networked servers seems to be not scalable enough to support massively multiplayer applications, peer-to-peer (P2P) architectures have been proposed as an efficient and truly scalable solution for this kind of systems. However, the main challenge of P2P architectures consists of providing each avatar with updated information about which other avatars are its neighbors. We have denoted this problem as the awareness problem. Although some proposals have been made, none of them provide total awareness to avatars under any situation.

This paper presents a new awareness method based on unicast communication that is capable of providing awareness to 100% of avatars, regardless of both their location and their movement pattern in the virtual world. Therefore, it allows large scale DVEs based on P2P architectures to properly scale with the number of users while fully providing awareness to all of them.

This paper is supported by the Spanish MEC under Grant TIC2003-08154-C06-04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, T.: Massively Multiplayer Game Development II. Charles River Media (2005)

    Google Scholar 

  2. Anarchy Online, http://www.anarchy-online.com

  3. Beatrice, N., Antonio, S., Rynson, L., Frederick, L.: A multiserver architecture for distributed virtual walkthrough. In: ACM VRST 2002, pp. 163–170 (2002)

    Google Scholar 

  4. Bouras, C., Fotakis, D., Philopoulos, A.: A distributed virtual learning centre in cyberspace. In: Proc. of Int. Conf. on Virtual Systems and Multimedia (VSMM 1998) (November 1998)

    Google Scholar 

  5. Everquest, http://everquest.station.sony.com/

  6. Frecon, E., Stenius, M.: Dive: A scalable network architecture for distributed virtual environments. Distributed Systems Engineering Journal 5(3), 91–100 (1998)

    Article  Google Scholar 

  7. Fujimoto, R.M., Weatherly, R.M.: Time management in the dod high level architecture. In: Proceedings of tenth Workshop on Parallel and Distributed Simulation, pp. 60–67 (1996)

    Google Scholar 

  8. Gautier, L., Diot, C.: Design and evaluation of mimaze, a multi-player game on the internet. In: Proceedings of IEEE Multimedia Systems Conference (1998)

    Google Scholar 

  9. Greenhalgh, C., Bullock, A., Frïon, E., Llyod, D., Steed, A.: Making networked virtual environments work. Presence: Teleoperators and Virtual Environments 10(2), 142–159 (2001)

    Article  Google Scholar 

  10. Hu, S.Y., Liao, G.M.: Scalable peer-to-peer networked virtual environment. In: ACM SIGCOMM 2004 workshops on NetGames 2004, pp. 129–133 (2004)

    Google Scholar 

  11. Kawahara, Y., Aoyama, T., Morikawa, H.: A peer-to-peer message exchange scheme for large scale networked virtual environments. Telecommunication Systems 25(3), 353–370 (2004)

    Article  Google Scholar 

  12. Keller, J., Simon, G.: Solipsis: A massively multi-participant virtual world. In: Proceedings of Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, USA, pp. 262–268 (2003)

    Google Scholar 

  13. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively multiplayer games. In: Proceedings of IEEE InfoCom 2004 (2004)

    Google Scholar 

  14. Lineage, http://www.lineage.com

  15. John, C.S., Lui, C.M.F.: An efficient partitioning algorithm for distributed virtual environment systems. IEEE TPDS, 13 (2002)

    Google Scholar 

  16. John, C.S., Lui, Chan, M.F., Oldfield, K.Y.: Dynamic partitioning for a distributed virtual environment. Technical report, Department of Computer Science. Chinese University of Hong Kong (1998)

    Google Scholar 

  17. Macedonia, M.R.: A taxonomy for networked virtual environments. IEEE Multimedia 4(1), 48–56 (1997)

    Article  Google Scholar 

  18. Macedonia, M.R., Zyda, M., Pratt, D.R., Brutzman, D.P., Barham, P.T.: Exploiting reality with multicast groups: A network architecture for large-scale virtual environments. In: Proceedings of the 1995 IEEE Virtual Reality Annual Symposium, pp. 2–10 (1995)

    Google Scholar 

  19. Matijasevic, M., Valavanis, K.P., Gracanin, D., Lovrek, I.: Application of a multi-user distributed virtual environment framework to mobile robot teleoperation over the internet. Machine Intelligence & Robotic Control 1(1), 11–26 (1999)

    Google Scholar 

  20. Miller, D.C., Thorpe, J.A.: Simnet: The advent of simulator networking. IEEE TPDS 13 (2002)

    Google Scholar 

  21. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-peer computing. Technical report, Technical Report HPL-2002-57, HP Laboratories, Palo Alto (2002)

    Google Scholar 

  22. Mooney, S., Games, B.: Battlezone: Official Strategy Guide. BradyGame Publisher (1998)

    Google Scholar 

  23. Morillo, P., Orduña, J.M., Fernández, M., Duato, J.: An adaptive load balancing technique for distributed virtual environment systems. In: Proc. of Intl. Conf. on Parallel and Distributed Computing and Systems (PDCS 2003) IASTED, pp. 256–261. ACTA Press (2003)

    Google Scholar 

  24. Morillo, P., Orduña, J.M., Fernández, M., Duato, J.: A fine-grain method for solving the partitioning problem in distributed virtual environment systems (Best paper award in the area of load balancing). In: Proc. of Intl. Conf. on Parallel and Distributed Computing and Systems (PDCS 2004) IASTED, pp. 292–297. ACTA Press (2004) Best paper award in the area of load balancing

    Google Scholar 

  25. Morillo, P., Orduña, J.M., Fernández, M., Duato, J.: Improving the performance of distributed virtual environment systems. IEEE Transactions on Parallel and Distributed Systems 16(7), 637–649 (2005)

    Article  Google Scholar 

  26. Oliveira, M., Crowcroft, J., Slater, M.: Components for distributed virtual environments. In: Presence, vol. 10(1), pp. 56–61. The MIT Press, Cambridge (2001)

    Google Scholar 

  27. Quake, http://www.idsoftware.com/games/quake

  28. Roberts, D., Wolff, R.: Controlling consistency within collaborative virtual environments. In: Proceedings of IEEE Symposium on Distributed Simulation and Real-Time Applications (DSRT 2004), pp. 46–52 (2004)

    Google Scholar 

  29. Salles, J.M., Galli, R., Almeida, A.C., et al.: mworld: A multiuser 3d virtual environment. IEEE Computer Graphics 17(2) (1997)

    Google Scholar 

  30. Singhal, S., Zyda, M.: Networked Virtual Environments. ACM Press, New York (1999)

    Google Scholar 

  31. Smed, J., Kaukoranta, T., Hakonen, H.: A review on networking and multiplayer computer games. Technical report, Turku Centre for Computer Science. Tech Report 454 (2002)

    Google Scholar 

  32. Randall, B., Smith, R., Hixon, Horan, B.: Collaborative Virtual Environments. In: Chapter Supporting Flexible Roles in a Shared Space. Springer, Heidelberg (2001)

    Google Scholar 

  33. Startcraft, http://www.blizzard.com/starcraft

  34. Steed, A., Angus, C.: Supporting scalable peer to peer virtual environments using frontier sets. In: IEEE Virtual Reality-2005. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  35. Tam, P.T.: Communication cost optimization and analysis in distributed virtual environment. Technical report, Department of Computer Science. Chinese University of Hong Kong (1998)

    Google Scholar 

  36. Zhou, S., Cai, W., Lee, B., Turner, S.J.: Time-space consistency in large-scale distributed virtual environments. ACM Transactions on Modeling and Computer Simulation 14(1), 31–47 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morillo, P., Moncho, W., Orduña, J.M., Duato, J. (2006). Providing Full Awareness to Distributed Virtual Environments Based on Peer-to-Peer Architectures. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_29

Download citation

  • DOI: https://doi.org/10.1007/11784203_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics