Skip to main content

A New Version of the Fuzzy-ID3 Algorithm

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

  • 1794 Accesses

Abstract

In this paper, a new version of the Fuzzy-ID3 algorithm is presented. The new algorithm allows to construct decision trees with smaller number of nodes. This is because of the modification that many different attributes and their values can be assigned to single leaves of the tree. The performance of the algorithm was checked on three typical benchmarks data available on the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases. University of California, Dept. of Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  3. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics Part II, 179–188 (1936)

    Google Scholar 

  4. Friedman, J.H., Kohavi, R., Yun, Y.: Lazy Decision Trees. In: Proc. of the Thirteenth National Conference on Artificial Intelligence, pp. 717–724 (1996)

    Google Scholar 

  5. Ichihashi, H., Shirai, T., Nagasaka, K., Miyoshi, T.: Neuro-fuzzy ID3: a method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets and Systems 81(1), 157–167 (1996)

    Article  MathSciNet  Google Scholar 

  6. Janikow, C.Z.: Fuzzy Decision Trees: Issues and Methods. IEEE Transactions on Systems, Man, and Cybernetics 28(3), 1–14 (1998)

    Google Scholar 

  7. Janikow, C.Z.: Exemplar Learning in Fuzzy Decision Trees. In: Proc. of IEEE International Conference on Fuzzy Systems, Piscataway, NJ, pp. 1500–1505 (1996)

    Google Scholar 

  8. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc, Los Altos (1993)

    Google Scholar 

  10. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2002)

    Google Scholar 

  11. Rutkowski, L.: Artificial intelligence methods and techniques, PWN (in Polish) (2005)

    Google Scholar 

  12. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zimmermann, H.-J.: Fuzzy Set Theory. Kluwer Academic Publishers, Boston (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartczuk, Ł., Rutkowska, D. (2006). A New Version of the Fuzzy-ID3 Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_111

Download citation

  • DOI: https://doi.org/10.1007/11785231_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics