Abstract
In this paper we present the performance evaluation of our fuzzy-neural HTTP request distribution algorithm called FNRD, which assigns each incoming request to the server in the Web cluster with the quickest expected response time. The fuzzy mechanism is used to estimate the expected response times. A neural-based feedback loop is used for real-time tuning of response time estimates. To evaluate the system, we have developed a detailed simulation and workload model using CSIM19 package. Our simulations show that FNRD can be more effective than its competitors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arlit, M., Jin, T.: A workload characterization study of the 1998 World Cup Web site. IEEE Network 14(3), 30–37 (2000)
Aron, M., Druschel, P., Zwaenepoel, W.: Efficient support for P-HTTP in cluster-based Web servers. In: Proc. Usenix Ann. Techn. Conf., Monterey, CA (1999)
Barford, P., Crovella, M.E.: A performance evaluation of Hyper Text Transfer Protocols. In: Proc. ACM SIGMETRICS 1999, Atlanta, pp. 188–197 (1999)
Borzemski, L., Zatwarnicki, K.: A fuzzy adaptive request distribution algorithm for cluster-based Web systems. In: Proc. of 11th Conf. on Parallel, Distributed and Network-based Processing, pp. 119–126. IEEE CS Press, Los Alamitos (2003)
Borzemski, L., Zatwarnicki, K.: Using Adaptive Fuzzy-Neural Control to Minimize Response Time in Cluster-Based Web Systems. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 63–68. Springer, Heidelberg (2005)
Bunt, R., Eager, D., Oster, G., Wiliamson, C.: Achieving load balance and effective caching in clustered web servers. In: Proc. 4th Int’l Web Caching Workshop (1999)
Cardellini, V., Casalicchio, E., Colajanni, M., Mambelli, M.: Web switch support for differentiated services. ACM Perf. Eval. Rev. 29(2), 14–19 (2001)
Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed Web-server systems. ACM Comp. Surv. 34(2), 263–311 (2002)
Cheng, R.G., Chang, C.J.: A QoS-provisioning neural fuzzy connection admission controller for multimedia networks. IEEE Trans. on Networking 7(1), 111–121 (1999)
Diao, Y., Hellerstein, J.L., Parekh, S.: Optimizing quality of service using fuzzy control. In: Proc. of Distributed Systems Operations and Management (2002)
Kwok, Y.-K., Cheung, L.-S.: A new fuzzy-decision based load balancing system for distributed object computing. J. Parallel Distribut. Comput. 64, 238–253 (2004)
Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J.L., Parekh, S.: Online response time optimization of Apache Web server. In: Int’l Workshop on Quality of Service (2003)
Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. on Computers C-26(12), 1182–1191 (1977)
Mesquite Software Inc. CSIM19 User’s Guide. Austin, TX. http: http://www.mesquite.com
Pai, V.S., Aront, M., Banga, G., Svendsen, M., Druschel, P.: Locality-aware request distribution in cluster-based network servers. In: Proc. of 8th ACM Conf. on Arch. Support for Progr. Languages (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borzemski, L., Zatwarnicki, K. (2006). Performance Evaluation of Fuzzy-Neural HTTP Request Distribution for Web Clusters. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_21
Download citation
DOI: https://doi.org/10.1007/11785231_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)