Skip to main content

Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

  • 1709 Accesses

Abstract

In this paper, we present an evolutionary algorithm application to partitioning VLSI circuits on subcircuits with minimal number of connections between them. The algorithm is characterized by a multi-layer chromosome structure. Due to this structure, the partition of circuits is possible without applying a repair mechanism in the algorithm. The test circuits chosen from literature and created randomly are partitioned using proposed method. Results obtained by this method are compared with results obtained using a traditional Kernighan-Lin algorithm.

This work was supported by the Polish Ministry of Scientific Research and Information Technology (MNiI) under Grant No. 3 T11B 025 29.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kozieł, S.: Evolutionary algorithms and their applications to the optimisation and modelling of the analogue electronic circuits, Ph. D. Thesis, Technical University of Gdańsk, Department of Electronics, Telecommunications, and Computer Science (1999)

    Google Scholar 

  2. Sait, S.M., Youssef, H.: VLSI physical design automation. Theory and practise. IEEE Press, New York (1995)

    Google Scholar 

  3. Chen, Y.P., Wang, T.C., Wong, D.F.: A Graph partitioning problem for multiple-chip design. In: Proceedings ISCAS 1993, pp. 1778-1781 (1993)

    Google Scholar 

  4. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)

    Google Scholar 

  5. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. In: Proceedings of the ACM/IEEE Design Automation Conference, pp. 175–181.

    Google Scholar 

  6. Raman, S., Patnaik, L.M.: Performance-Driven MCM Partitioning Through an Adaptive Genetic Algorithm. IEEE Transaction on VLSI Systems 4(4) (December 1996)

    Google Scholar 

  7. Vemuri, R.: Genetic algorithms for MCM partitioning. Electronic Letters 30(16), 1270–1272 (1994)

    Article  Google Scholar 

  8. Słowik, A., Białko, M.: Modified Version of Roulette Selection for Evolution Algorithm - The Fan Selection. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 474–479. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Rutkowski, J., Zieliński, Ł : Using evolutionary techniques for chosen optimalization problems related to analog circuits design. In: Proceedings of ECCTD 2003 Conference (2003)

    Google Scholar 

  10. Słowik, A., Białko, M.: Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Goldberg, D.E., Lingle, R.: Alleles, Loci, and the TSP. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 154–159. Lawrence Erlbaum Associates, Hillsdale (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Słowik, A., Białko, M. (2006). Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_50

Download citation

  • DOI: https://doi.org/10.1007/11785231_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics