Skip to main content

Interactive Analysis of Preference-Ordered Data Using Dominance-Based Rough Set Approach

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

We present a method of interactive analysis of preference ordered data that is based on Dominance-based Rough Set Approach (DRSA). The presented here methodology is conceptually similar to multi-dimensional reports (pivot tables) applied in On-Line Analytical Processing (OLAP). However, it allows to identify patterns in data that remain undiscovered by traditional approaches to multi-dimensional reporting. The main difference consists in use of specific dimensions and measures defined within DRSA. The method permits to find a set of reports that ensures specified properties of analyzed data and is optimal with respect to a given criterion. An example of reports generated for a well-known breast cancer data set is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Błaszczyński, Dembczyński, K.J., Słowiński, R.: On-Line Satisfaction Analysis using Dominance-based Rough Set Approach. In: Rutkowska, D., et al. (eds.) Selected Problems of Computer Science (2005)

    Google Scholar 

  2. Dembczyński, K., Greco, S., Słowiński, R.: Second-order Rough Approximations in Multi-criteria Classification with Imprecise Evaluations and Assignments. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 54–63. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Greco, S., Matarazzo, B., Słowiński, R.: A new rough set approach to evaluation of bankruptcy risk. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, pp. 121–136. Kluwer, Dordrecht (1998)

    Google Scholar 

  4. Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation by dominance relations. European Journal of Operational Research 117, 63–83 (1999)

    Article  MATH  Google Scholar 

  5. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research 138, 247–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kohavi, R., Sommerfield, D.: Targeting Business Users with Decision Table Classifiers. In: Knowledge Discovery and Data Mining, pp. 249–253 (1998)

    Google Scholar 

  8. Michalski, R.S.: A Planar Geometrical Model for Representing Multi-Dimensional Discrete Spaces and Multiple-Valued Logic Functions. In: ISG Report No. 897, Department of Computer Science, University of Illinois, Urbana (1978)

    Google Scholar 

  9. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna (2005), http://www.R-project.org

  10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Błaszczyński, J., Dembczyński, K., Słowiński, R. (2006). Interactive Analysis of Preference-Ordered Data Using Dominance-Based Rough Set Approach. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_52

Download citation

  • DOI: https://doi.org/10.1007/11785231_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics