Abstract
Formal concept analysis and rough set theory provide two different methods for data analysis and knowledge processing. In this paper, we discuss some basic relationships between the extensions of concepts and the equivalence class in rough set theory. And by introducing the term of anti-chain formal context, we study their relation between the two theories more deeply. Finally, we study the relation between the reduction of formal context in concept lattice and attribute reduction in rough set theory.
Supported by 973 program of China (No.2002CB312200).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: Deswart, H., Orlowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Application of Relational Structures as Knowledge Instrumwnts, Springer, Heidelberg (2003)
Gediga, G., Duntsch, I.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)
Gediga, G., Duntsch, I.: Skills and knowledge structures. British Journal of Mathematical and Statistical Psychology 48, 9–27 (1995)
Ganter, B., Wille, R.: Formal concept analysis. Mathematical FoundationsBelin. Springer, Heidelberg (1999)
Hu, K., Sui, Y., Lu, Y., Wang, J., Shi, C.: Concept approximation in concept lattice. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 167–173. Springer, Heidelberg (2001)
Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fundamenta Informaticae 27, 169–181 (1996)
Pagliani, P.: From concept lattices to approximation spaces:algebraic structures of some spaces of partial objects. Fundamenta Informaticae 18, 1–18 (1993)
Pawlak, Z.: Rough sets: Theoretical aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)
Saquer, J., Deogun, J.S.: Formal rough concept analysis, New directions in Rough Sets,Data Mining, and Granular-Soft Computer Science 1711, pp. 91–99. Springer, Heidelberg (1999)
Wille, R.: Restructuring lattice lattice Theory:an approach based on hierarchies of concept. In: Ordered Sets,Rival,1., Reidel,Dordrecht-Boston, pp. 445–470 (1982)
Wolff, K.E.: A comceptual view of knowledge bases in rough set theory. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 220–228. Springer, Heidelberg (2001)
Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in Data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)
Yao, Y.Y., Chen, Y.H.: Rough set approximation in formal concept analysis. In: Dick, S., Kurgan, L., Pedrycz, W., Reformat, M. (eds.) Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 73–78. IEEE, Los Alamitos (2004)
Zhang, W.X., Leung, Y., Wu, W.Z.: Information Systems and Knowledge Discovery. Science Press, Beijing (2003)
Zhang, W.X., Qiu, G.F.: Uncertain Decision Making Based on Rough sets. Tsinghua University Press, Beijing (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Zhang, WX. (2006). Relationships Between Concept Lattice and Rough Set. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_57
Download citation
DOI: https://doi.org/10.1007/11785231_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)