Skip to main content

Learning Vector Quantization Classification with Local Relevance Determination for Medical Data

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

In this article we extend the global relevance learning vector quantization approach by local metric adaptation to obtain a locally optimized model for classification. In this sense we make a step in the direction of quadratic discriminance analysis in statistics where classwise variance matrices are used for class adapted discriminance functions. We demonstrateb the performance of the model for a medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albani, C., Blaser, G., Rietz, U., Villmann, T., Geyer, M.: Die geschlechtsspezifische Erfassung körperlicher Beschwerden bei PsychotherapiepatientInnen mit dem ”Gießener Beschwerdebogen” (GBB). In: Hinz, A., Decker, O. (eds.) Gesundheit im gesellschaftlichen Wandel, Psychosozial-Verlag, Gießen (2006)

    Google Scholar 

  2. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning and Research 3, 463–482 (2002)

    Article  MathSciNet  Google Scholar 

  3. Franke, G.H.: Möglichkeiten und Grenzen im Einsatz der Symptom-Check-List-90-R. Verhaltenstherapie & psychosoziale Praxis 33, 475–485 (2001)

    Google Scholar 

  4. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21, 21–44 (2005)

    Article  Google Scholar 

  5. Hammer, B., Strickert, M., Villmann, T.: On the generalization ability of GRLVQ networks. Neural Processing Letters 21, 109–120 (2005)

    Article  Google Scholar 

  6. Hammer, B., Villmann, T.: On the generalization ability of localized GRLVQ. Technical Report Clausthal University of Technology, Institute for Computer Science (2005)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  8. Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press, Cambridge (1995)

    Google Scholar 

  9. Villmann, T.: Neural Maps for Faithful Data Modelling in Medicine - State of the Art and Exemplary Applications. Neurocomputing 48, 229–250 (2002)

    Article  MATH  Google Scholar 

  10. Villmann, T., Blaser, G., Körner, A., Albani, C.: Relevanzlernen und statistische Diskriminanzverfahren zur ICD-10 Klassifizierung von SCL90-Patienten-Profilen bei Therapiebeginn. In: G. Plöttner (ed.). Psychotherapeutische Versorgung und Versorgungsforschung. Leipziger Universitätsverlag, Leipzig (2004)

    Google Scholar 

  11. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, B., Villmann, T., Schleif, F.M., Albani, C., Hermann, W. (2006). Learning Vector Quantization Classification with Local Relevance Determination for Medical Data. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_63

Download citation

  • DOI: https://doi.org/10.1007/11785231_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics