Abstract
In this article we extend the global relevance learning vector quantization approach by local metric adaptation to obtain a locally optimized model for classification. In this sense we make a step in the direction of quadratic discriminance analysis in statistics where classwise variance matrices are used for class adapted discriminance functions. We demonstrateb the performance of the model for a medical application.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albani, C., Blaser, G., Rietz, U., Villmann, T., Geyer, M.: Die geschlechtsspezifische Erfassung körperlicher Beschwerden bei PsychotherapiepatientInnen mit dem ”Gießener Beschwerdebogen” (GBB). In: Hinz, A., Decker, O. (eds.) Gesundheit im gesellschaftlichen Wandel, Psychosozial-Verlag, Gießen (2006)
Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning and Research 3, 463–482 (2002)
Franke, G.H.: Möglichkeiten und Grenzen im Einsatz der Symptom-Check-List-90-R. Verhaltenstherapie & psychosoziale Praxis 33, 475–485 (2001)
Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21, 21–44 (2005)
Hammer, B., Strickert, M., Villmann, T.: On the generalization ability of GRLVQ networks. Neural Processing Letters 21, 109–120 (2005)
Hammer, B., Villmann, T.: On the generalization ability of localized GRLVQ. Technical Report Clausthal University of Technology, Institute for Computer Science (2005)
Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)
Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press, Cambridge (1995)
Villmann, T.: Neural Maps for Faithful Data Modelling in Medicine - State of the Art and Exemplary Applications. Neurocomputing 48, 229–250 (2002)
Villmann, T., Blaser, G., Körner, A., Albani, C.: Relevanzlernen und statistische Diskriminanzverfahren zur ICD-10 Klassifizierung von SCL90-Patienten-Profilen bei Therapiebeginn. In: G. Plöttner (ed.). Psychotherapeutische Versorgung und Versorgungsforschung. Leipziger Universitätsverlag, Leipzig (2004)
Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hammer, B., Villmann, T., Schleif, F.M., Albani, C., Hermann, W. (2006). Learning Vector Quantization Classification with Local Relevance Determination for Medical Data. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_63
Download citation
DOI: https://doi.org/10.1007/11785231_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)