Abstract
Cephalometric landmarks detection is a knowledge intensive activity to identify on X-rays of the skull key points to perform measurements needed for medical diagnosis and treatment. We have elsewhere proposed CNNs (Cellular Neural Networks) to achieve an accuracy in automated landmarks detection suitable for clinical practice, and have applied the method for 8 landmarks located on the bone profile. This paper proposes and evaluates a CNNs approach augmented by local image dynamic enhancemet for other 3 landmarks that are notoriously difficult to locate; the advantages of this method in the landmark detection problem are pointed out.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cardillo, J., Sid-Ahmed, M.A.: An image processing system for locating craniofacial landmarks. IEEE Trans. On Medical Imaging 13, 275–289 (1994)
Hutton, T.J., Cunningham, S., Hammond, P.: An evaluation of active shape models for the automatic identification of cephalometric landmarks. European Journal of Orthodontics 22, 499–508 (2000)
Rudolph, D.J., Sinclair, P.M., Coggins, J.M.: Automatic computerized radiograohic identification of cephalometric landmarks. American Journal of Orthodontics and Dentofacial Orthopedics 113, 173–179 (1998)
Liu, J., Chen, Y., Cheng, K.: Accuracy of computerized automatic identification of cephalometric landmarks. American Journal of Orthodontics and Dentofacial Orthopedics 118, 535–540 (2000)
Giordano, D., Leonardi, R., Maiorana, F., Cristaldi, G., Distefano, M.: Automatic landmarking of cephalograms by CNNS. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 342–352. Springer, Heidelberg (2005)
Levy-Mandel, A.D., Venetsamopolus, A.N., Tsosos, J.K.: Knowledge based landmarking of cephalograms. Computers and Biomedical Research 19, 282–309 (1986)
Parthasaraty, S., Nugent, S.T., Gregson, P.G., Fay, D.F.: Automatic landmarking of cephalograms. Computers and Biomedical research 22, 248–269 (1989)
Tong, W., Nugent, S.T., Jensen, G.M., Fay, D.F.: An algorithm for locating landmarks on dental X-Rays. In: 11th IEEE Int. Conf. on Engineering in Medicine & Biology (1990)
Davis, D.N., Taylor, C.J.: A blackboard architecture for automating cephalometric analysis. Journal of Medical Informatics 16, 137–149 (1991)
Grau, V., Alcaniz, M., Juan, M.C., Monserrat, C., Knoll, C.: Automatic localization of cephalometric landmarks. Journal of Biomedical Informatics 34, 146–156 (2001)
Chen, Y., Cheng, K., Liu, J.: Improving Cephalogram analysis through feature subimage extraction. IEEE Engineering in Medicine and Biology, 25–31 (1999)
El-Feghi, I., Sid-Ahmed, M.A., Ahmadi, M.: Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognition 34, 609–621 (2004)
Sanei, S., Sanei, P., Zahabsaniesi: Cephalograms analysis applying template matching and fuzzy logic. Image and Vision Computing 18, 39–48 (1999)
Innes, A., Ciesilski, V., Mamutil, J., Sabu, J.: Landmark detection for cephalometric radiology images using Pulse Coupled Neural Networks. In: Arabnia, H., Mun, Y. (eds.) Proc. Int. Conf. on Artificial Intelligence, vol. 2, CSREA Press (2002)
Romaniuk, B., Desvignes, M., Revenu, M., Deshayes, M.-J.: Shape variability and spatial relationships modeling in statistical pattern recognition. Pattern Recognition Letters 25, 239–247 (2004)
El-Feghi, I., Sid-Ahmed, M.A., Ahmadi, M.: Craniofacial landmarks extraction by partial least squares regression. In: Proc. Of the 2004 International symposium on Circuits and Systems (ISCAS 2004), vol. V, pp. 45–48 (2004)
Chua, L.O., Roska, T.: The CNN paradigm. IEEE TCAS, I 40, 147–156 (1993)
Szabo, T., Barsi, P., Szolgay, P.: Application of analogic CNN algorithms in telemedical neuroradiology. In: Proc. 7th IEEE International Workshop on Cellular Neural Networks and Their Applications (CNNA 2002), pp. 579–586 (2002)
Aizemberg, I., Aizenberg, N., Hiltner, J., Moraga, C., Meyer zu Bexten, E.: Cellular neural networks and computational intelligence in medical image processing. Image and vision computing 19, 177–183 (2001)
Roska, T., Kek, L., Nemes, L., Zarandy, S.P.: CSL CNN Software Library. Templates and Algorithms, Budapest, Hungary (1999)
Liñán, G., Domnguez-Castro, R., Espejo, S., Rodríguez-Vázquez, A.: ACE16k: A Programmable Focal Plane Vision Processor with 128 x 128 Resolution. In: ECCTD 2001-European Conference on Circuit Theory and Design, Espoo, Finland, August 28-31, 2001, pp. 345–348 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordano, D., Leonardi, R., Maiorana, F., Spampinato, C. (2006). Cellular Neural Networks and Dynamic Enhancement for Cephalometric Landmarks Detection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_80
Download citation
DOI: https://doi.org/10.1007/11785231_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)