Skip to main content

Cellular Neural Networks and Dynamic Enhancement for Cephalometric Landmarks Detection

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

  • 1327 Accesses

Abstract

Cephalometric landmarks detection is a knowledge intensive activity to identify on X-rays of the skull key points to perform measurements needed for medical diagnosis and treatment. We have elsewhere proposed CNNs (Cellular Neural Networks) to achieve an accuracy in automated landmarks detection suitable for clinical practice, and have applied the method for 8 landmarks located on the bone profile. This paper proposes and evaluates a CNNs approach augmented by local image dynamic enhancemet for other 3 landmarks that are notoriously difficult to locate; the advantages of this method in the landmark detection problem are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cardillo, J., Sid-Ahmed, M.A.: An image processing system for locating craniofacial landmarks. IEEE Trans. On Medical Imaging 13, 275–289 (1994)

    Article  Google Scholar 

  2. Hutton, T.J., Cunningham, S., Hammond, P.: An evaluation of active shape models for the automatic identification of cephalometric landmarks. European Journal of Orthodontics 22, 499–508 (2000)

    Article  Google Scholar 

  3. Rudolph, D.J., Sinclair, P.M., Coggins, J.M.: Automatic computerized radiograohic identification of cephalometric landmarks. American Journal of Orthodontics and Dentofacial Orthopedics 113, 173–179 (1998)

    Article  Google Scholar 

  4. Liu, J., Chen, Y., Cheng, K.: Accuracy of computerized automatic identification of cephalometric landmarks. American Journal of Orthodontics and Dentofacial Orthopedics 118, 535–540 (2000)

    Article  Google Scholar 

  5. Giordano, D., Leonardi, R., Maiorana, F., Cristaldi, G., Distefano, M.: Automatic landmarking of cephalograms by CNNS. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 342–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Levy-Mandel, A.D., Venetsamopolus, A.N., Tsosos, J.K.: Knowledge based landmarking of cephalograms. Computers and Biomedical Research 19, 282–309 (1986)

    Article  Google Scholar 

  7. Parthasaraty, S., Nugent, S.T., Gregson, P.G., Fay, D.F.: Automatic landmarking of cephalograms. Computers and Biomedical research 22, 248–269 (1989)

    Article  Google Scholar 

  8. Tong, W., Nugent, S.T., Jensen, G.M., Fay, D.F.: An algorithm for locating landmarks on dental X-Rays. In: 11th IEEE Int. Conf. on Engineering in Medicine & Biology (1990)

    Google Scholar 

  9. Davis, D.N., Taylor, C.J.: A blackboard architecture for automating cephalometric analysis. Journal of Medical Informatics 16, 137–149 (1991)

    Article  Google Scholar 

  10. Grau, V., Alcaniz, M., Juan, M.C., Monserrat, C., Knoll, C.: Automatic localization of cephalometric landmarks. Journal of Biomedical Informatics 34, 146–156 (2001)

    Article  Google Scholar 

  11. Chen, Y., Cheng, K., Liu, J.: Improving Cephalogram analysis through feature subimage extraction. IEEE Engineering in Medicine and Biology, 25–31 (1999)

    Google Scholar 

  12. El-Feghi, I., Sid-Ahmed, M.A., Ahmadi, M.: Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognition 34, 609–621 (2004)

    Article  Google Scholar 

  13. Sanei, S., Sanei, P., Zahabsaniesi: Cephalograms analysis applying template matching and fuzzy logic. Image and Vision Computing 18, 39–48 (1999)

    Article  Google Scholar 

  14. Innes, A., Ciesilski, V., Mamutil, J., Sabu, J.: Landmark detection for cephalometric radiology images using Pulse Coupled Neural Networks. In: Arabnia, H., Mun, Y. (eds.) Proc. Int. Conf. on Artificial Intelligence, vol. 2, CSREA Press (2002)

    Google Scholar 

  15. Romaniuk, B., Desvignes, M., Revenu, M., Deshayes, M.-J.: Shape variability and spatial relationships modeling in statistical pattern recognition. Pattern Recognition Letters 25, 239–247 (2004)

    Article  Google Scholar 

  16. El-Feghi, I., Sid-Ahmed, M.A., Ahmadi, M.: Craniofacial landmarks extraction by partial least squares regression. In: Proc. Of the 2004 International symposium on Circuits and Systems (ISCAS 2004), vol. V, pp. 45–48 (2004)

    Google Scholar 

  17. Chua, L.O., Roska, T.: The CNN paradigm. IEEE TCAS, I 40, 147–156 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Szabo, T., Barsi, P., Szolgay, P.: Application of analogic CNN algorithms in telemedical neuroradiology. In: Proc. 7th IEEE International Workshop on Cellular Neural Networks and Their Applications (CNNA 2002), pp. 579–586 (2002)

    Google Scholar 

  19. Aizemberg, I., Aizenberg, N., Hiltner, J., Moraga, C., Meyer zu Bexten, E.: Cellular neural networks and computational intelligence in medical image processing. Image and vision computing 19, 177–183 (2001)

    Article  Google Scholar 

  20. Roska, T., Kek, L., Nemes, L., Zarandy, S.P.: CSL CNN Software Library. Templates and Algorithms, Budapest, Hungary (1999)

    Google Scholar 

  21. Liñán, G., Domnguez-Castro, R., Espejo, S., Rodríguez-Vázquez, A.: ACE16k: A Programmable Focal Plane Vision Processor with 128 x 128 Resolution. In: ECCTD 2001-European Conference on Circuit Theory and Design, Espoo, Finland, August 28-31, 2001, pp. 345–348 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giordano, D., Leonardi, R., Maiorana, F., Spampinato, C. (2006). Cellular Neural Networks and Dynamic Enhancement for Cephalometric Landmarks Detection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_80

Download citation

  • DOI: https://doi.org/10.1007/11785231_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics