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Abstract. Motivated by the frequency assignment problem in hetero-
geneous multihop radio networks, where different radio stations may
have different transmission ranges, we introduce two new types of col-
oring of graphs, which generalize the well-known Distance-k-Coloring.
Let G = (V,E) be a graph modeling a radio network, and assume
that each vertex v of G has its own transmission radius r(v), a non-
negative integer. We define r-coloring (" -coloring) of G as an assign-
ment @ : V — {0,1,2,...} of colors to vertices such that &(u) = @(v)
implies da(u,v) > r(v) 4+ r(u) (da(u,v) > r(v) + r(u) + 1, respectively).
The r-Coloring problem (the r*-Coloring problem) asks for a given graph
G and a radius-function r : V +— N U {0}, to find an 7-coloring (an r*-
coloring, respectively) of G with minimum number of colors. Using a new
notion of generalized powers of graphs, we investigate the complexity of
the r-Coloring and r*-Coloring problems on several families of graphs.

1 Introduction

The Frequency Assignment Problem (FAP) in multihop radio networks is the
problem of assigning frequencies to transmitters exploiting frequency reuse while
keeping signal interference to acceptable levels. The FAP is usually modeled
by variations of the graph coloring problem. The L(61, 62, ..., 0k)-coloring of a
graph G = (V, E), where §;s are positive integers, is an assignment function
¢ : V — N U{0} such that |®(u) — $(v)| > & when the distance between u
and v in G is equal to ¢ (i € {1,2,...,k}). The aim is to minimize the range of
the frequencies used, i.e., we search for the minimum A such that G admits a
L(61,062,...,06k)-coloring with frequencies between 0 and \. Let us denote that
minimum by As, s,...6,(G). Unfortunately, already a restricted version of this
problem, the L(2,1)-coloring problem (called also the Radiocoloring problem), is
NP-complete even for planar graphs, bipartite graphs, chordal graphs and split
graphs [5,[21], the classes of graphs where the ordinary graph coloring problem
is easily (polynomial time) solvable. Polynomial time algorithms for optimal
L(2, 1)-coloring are known only for trees [I1.24], cographs [I1], k-almost trees
[19] and for very regular graphs such as triangular grids, rectangular grids and
hexagonal grids (see [4,[10] and papers cited therein).
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Another variation of FAP considers k-powers, G¥ (k= 1,2,3,...), of a given
graph G. The kth power G* of G = (V, E) has the same vertex set V but two
vertices v and u are adjacent in G* if and only if their distance in G is at most
k. The problem is to color the kth power of G with minimum number of colors,
denoted by x(G*). This problem is extensively studied in literature and often
called Distance-k-Coloring. Again, the problem is NP-complete even for chordal
graphs [I] and for planar graphs and k = 2 [31]. Moreover, it is computationally
hard to approximately color the even powers of n-vertex chordal graphs within
an n ¢ factor, for any € > 0 [1]. Exact polynomial time algorithms are known
only for some special graph classes: for graphs with bounded tree-width [24], for
graphs with bounded clique-width [33], and for interval, strongly chordal, doubly
chordal, trapezoid, d-trapezoid, and cocomparability graphs as those families
of graphs are closed under taking powers [7}[14]15,[16,20,32] and the ordinary
coloring problem on them is polynomial time solvable [23}[26,[30]. Approximation
algorithms for coloring powers of chordal graphs and squares of planar graphs
are presented in [21[28].

The L(61,062,...,0k)-coloring problem and the Distance-k-Coloring problem
are related. Clearly, x(G*)—1 = A1, 1(G) £ X, 6,6, (G) and, since from

——

k
a valid coloring of G* we can always get a valid L(61,62, ..., 8)-coloring of G
by multiplying by ¢ := maz1<i<k{6;} the assigned color of each vertex, we have
also s, 6,5, (G) < t(x(G*) —1). Hence, an algorithm solving the Distance-k-
Coloring problem for a class of graphs also provides a (maz1<;<k{6;})-approxi-
mation for the L(61, 8, ..., k)-coloring problem. So, it is natural to investigate
graph classes for which powers G* are easy to color.

In this paper, we extend the second variant of the Frequency Assignment
Problem to the so-called heterogeneous multihop radio networks where different
radio stations may have different transmission ranges. In this model, two radio
stations z and y must not receive the same frequency if there is a third radio
station z which is within the transmission ranges of both = and y (to avoid
collisions at z). In a more restricted model, we may forbid even two radio stations
to have the same frequency if their transmission areas are very close. More
formally, let G = (V, E) be a graph modeling a radio network, and assume that
each vertex v of G has its own transmission radius r(v), a non-negative integer.
We define r-coloring of G as an assignment @ : V +— {0,1,2,...} of colors to
vertices such that @(u) = @(v) implies dg(u,v) > 7(v) + r(u), and r*-coloring
of G as an assignment @ : V — {0,1,2,...} of colors to vertices such that
&(u) = P(v) implies dg(u,v) > r(v) + r(u) + 1. Here, dg(u,v) is the shortest
path distance between u and v in G. The r-Coloring problem (the r*-Coloring
problem) asks for a given graph G and a radius-function r : V' +— N U {0}, to
find an r-coloring (an r+-coloring, respectively) of G with minimum number of
colors. Clearly, if r(v) =1 (I is a fixed integer) for each v € V', then r-coloring is
just an ordinary coloring of G% and r*-coloring is just an ordinary coloring of
G+ Hence, the r-Coloring and rt-Coloring problems generalize the Distance-
k-Coloring.
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Fig.1. A graph G with a radius-function r : V +— N U {0} (a), and the corresponding
graphs L(D(G,r)) (b) and I'(D(G, 1)) (c).

For a graph G = (V, E) with a radius-function r : V. — NU{0}, we can define
two new graphs I'(D(G,r)) and L(D(G,r)) (and call them generalized powers
of G) as follows. Both I'(D(G, r)) and L(D(G,r)) have the same vertex set V as
G has, and vertices u,v € V form an edge in I'(D(G,r)) (in L(D(G,r))) if and
only if dg(u,v) < r(v)+r(u)+1 (dg(u,v) < r(v)+r(u), respectively). Figure[ll
shows a graph G with a radius-function r : V' +— N U{0}, and the corresponding
graphs I'(D(G,r)) and L(D(G,r)). It is easy to see that an r-coloring of G is
nothing else than an ordinary coloring of L(D(G,r)) and an r*-coloring of G is
nothing else than an ordinary coloring of I'(D(G, r)).

In this paper, we investigate the r-Coloring and r*-Coloring problems on
special graph classes. We are interested in determining large families of graphs
G for which the graphs L(D(G,r)) and/or I'(D(G, r)) have enough structure to
exploit algorithmically and to solve the r-Coloring and/or r+-Coloring problems
on G efficiently. Among other results we show that

— if G is a chordal (interval, circular-arc, cocomparability, weakly chordal)
graph, then for any radius-function r : V. +— N U {0}, the graph I'(D(G, r))
is chordal (resp., interval, circular-arc, cocomparability, weakly chordal);

— if G is a chordal graph with chordal square G? (a so called power-chordal
graph), then for any radius-function r : V. — NU{0}, the graphs I'(D(G, r))
and L(D(G,r)) are chordal;

— if G is a weakly chordal graph with weakly chordal square G2, then for any
radius-function r : V +— N U {0}, the graphs I'(D(G, r)) and L(D(G,r)) are
weakly chordal;

— if G is a distance-hereditary graph, then for any radius-function r : V —
N U {0}, the graph I'(D(G, r)) is weakly chordal and the graph L(D(G,r))
is chordal,;

— if G is an AT-free graph, then for any radius-function r : V — N, the graphs
I'(D(G,r)) and L(D(G,r)) are cocomparability graphs (note that r(v) = 0
is not allowed here);

— if G is a cocomparability (interval, circular-arc) graph, then for any radius-
function r : V +— N, the graph L(D(G, r)) is cocomparability (resp., interval,
circular-arc).
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Since the (ordinary) coloring problem on chordal graphs, weakly chordal
graphs, interval graphs and cocomparability graphs are polynomial time solvable
(see [231261130]), we immediately obtain polynomial time solvability of the cor-
responding r-Coloring and/or r*-Coloring problems on those graphs. Unfortu-
nately, coloring of circular-arc graphs is an NP-complete problem [22]. However,
one can use the circular-arc graph coloring approximation algorithm of [27] with
a performance ratio of 3/2 to get an approximate solution for the corresponding
r-Coloring and/or r*-Coloring problems on circular-arc graphs.

2 Notations and Preliminaries

Let G = (V, E) be a finite, undirected, connected and simple (i.e. without loops
and multiple edges) graph. For two vertices z,y € V, the distance dg(z,y)
is the length (i.e. number of edges) of a shortest path connecting z and y.
By Ng(v) = {u : ww € E} and Ng[v] = Ng(v) U {v} we denote the open
neighborhood and the closed neighborhood of v, respectively. If no confusion can
arise we will omit the index G. Let N(G) = {N[v] : v € V} be the family of
closed neighborhoods of G. The disk centered at v with radius k is the set of all
vertices having distance at most k to v: N*¥[v] = {u : u € V and d(u,v) < k}.
Denote by D(G) = {N"[v] : v € V, r a non-negative integer} the family of all
disks of G and by N*(G) = {N*[v] : v € V}, where k is a fixed non-negative
integer, the family of all disks of radius k of GG. The kth power of a graph
G = (V, E) is the graph G* = (V,U), where two vertices z,y € V are adjacent
in G* if and only if dg(x,y) < k.

For a graph G, consider a family S = {S1,...,S5;} of subsets of V', i.e., S; CV,
it =1,...,1. The intersection graph L(S) of S is defined as follows. The sets from
S are the vertices of L(S) and two vertices of L(S) are joined by an edge if and
only if the corresponding sets intersect. The visibility graph I'(S) of S is defined
as follows. The sets from S are the vertices of I'(S) and two vertices of I'(S) are
joined by an edge if and only if the corresponding sets are visible to each other.
We say that sets S; and S; are visible to each other if S; NSj # () or there is an
edge of G with one end in S; and the other end in Sj.

It is easy to see, from the definitions, that

— two disks NP[v] and N?[u] of G are intersecting if and only if dg(u,v) < p+q
and are visible to each other if and only if dg(u,v) < p+q+ 1,

— L(N*(@)) is isomorphic to G* (k > 1), i.e., G* ~ LIN*(Q)),

— I'(N*(@)) is isomorphic to G2**+1 (k > 0), i.e., G+ ~ I(NF(G)).

Definitions of graph classes considered are given in appropriate sections.

3 c-Chordal Graphs

In this section we consider the generalized powers of c-chordal graphs. A graph
is called chordal if it has no induced cycles of size greater than 3 and is called
c-chordal if it has no induced cycles of size greater than ¢ (¢ > 3).
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Let a maximal induced cycle of G be an induced cycle of G with maximum
number of edges. Denote by [(G) the number of edges of a maximal induced
cycle of G. The parameter I(G) of a graph G is often called the chordality of G.
Clearly, the chordal graphs are exactly the graphs of chordality 3 and c-chordal
graphs are exactly the graphs of chordality ¢. In [7], an important lemma is
proven which connects the chordality of L(D(G)) with the chordality of G?.

Lemma 1. [7] For any graph G, [(L(D(G))) = I[(G?).

One can prove a similar result for graphs G and I'(D(G)) (proof is omitted).
Lemma 2. For any graph G with I[(G) > 3, (I'(D(Q))) = I(G).

From Lemma [l and Lemma 2] we conclude.

Theorem 1. For a graph G,

1) I'(D(Q)) is c-chordal if and only if G is c-chordal,
2) L(D(G)) is c-chordal if and only if G* is c-chordal.

Let now G = (V, E) be a graph and v : V +— N U{0} be a non-—negative integer—
valued radius-function defined on V. For a graph G with a radius-function r :
V +— N U{0}, define a subfamily D(G, r) of the family of all disks D(G) of G as
follows: D(G,r) = {N"™[] :v € V}.

Clearly, graphs L(D(G,r)) and I'(D(G,r)) are induced subgraphs of the
graphs L(D(Q))) and I'(D(Q)), respectively. Furthermore, the graph L(D(G, r))
can be viewed (by identifying every disk with its center) as a graph on the ver-
tex set V, where two vertices u,v € V are adjacent in L(D(G,r)) if and only if
de(u,v) < r(u)4r(v). Similarly, the graph I'(D(G, r)) can be viewed as a graph
on the vertex set V, where two vertices u,v € V are adjacent in I'(D(G,r)) if
and only if dg(u,v) < r(u) 4+ r(v) + 1. Thus, graphs I'(D(G, r)) and L(D(G,r))
are generalizations of odd and even, respectively, powers of G.

Since induced subgraphs of c-chordal graphs are c-chordal, we can state the
following corollaries from Lemma [Il and Lemma

Corollary 1. For any c-chordal graph G and any radius-function r : V +—
N U {0} defined on the vertex set of G, the graph I'(D(G,r)) is c-chordal. In
particular, odd powers G***1 (k =1,2,...) of a c-chordal graph G are c-chordal.

Corollary 2. Let G be a graph having c-chordal square G?. Then, for any
radius-function r : 'V +— N U {0} defined on the vertex set of G, the graph
L(D(G,r)) is c-chordal. In particular, if the square G* of some graph G is c-
chordal, then all even powers G** (k=1,2,...) of G are c-chordal.

Note that, Corollary [ generalizes the known fact that odd powers of chordal
graphs are chordal [1L[18,29]. Corollary [2] generalizes the known fact that even
powers of square-chordal graphs are chordal [7[18]. Here, a graph G is square-
chordal if its square G? is a chordal graph. Note also that the class of square-
chordal graphs comprises such known families of graphs as trees, interval graphs,
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directed path graphs, strongly chordal graphs, doubly chordal graphs, distance-
hereditary graphs, dually chordal graphs, homogeneous graphs, homogeneously
orderable graphs and others (see, for example, [71[8[9] and papers cited therein).
But, it still remains an open question to give a complete characterization of
the whole family of square-chordal graphs. As it was shown in [29], squares of
chordal graphs are not necessarily chordal; in fact, a square of a chordal graph
can have arbitrarily large chordality [29].

In [7], we defined power-chordal graphs as graphs G all powers G* (k > 1)
of which are chordal (or, equivalently, if both G and G? are chordal). For this
family of graphs we have.

Corollary 3. For a power-chordal graph G, graphs I'(D(G,r)), L(D( G,r)) are
chordal for any radius-function r : V. — N U {0} defined on the vertex set of G.

Notice that the class of power-chordal graphs comprises such known families of
graphs as trees, interval graphs, directed path graphs, strongly chordal graphs
and doubly chordal graphs [7].

4 Weakly Chordal Graphs

In this section we consider the generalized powers of weakly chordal graphs. In
what follows, the complement of a graph G is denoted by G, Cj, is an induced
cycle on k vertices and C}, is the complement of C. A graph G is weakly chordal
if both G and G are 4-chordal, i.e., G has neither C}, nor Cj, k > 4, as an induced
subgraph.

Lemma 3. Let G be a graph such that LIN(G)) ~ G2 is a 4-chordal graph
and L(D(G)) has no induced subgraphs isomorphic to Cs. Then, L(D(G)) is a
4-chordal graph, too.

Proof. Assume that the graph L(D(G)) is not 4-chordal. Then, there must exist
an induced cycle Cyy1 in L(D(G)) such that k + 1 > 4. In fact, k + 1 is larger
than 5 since L(D(G)) cannot have an induced subgraph isomorphic to C5 (notice
that an induced cycle on 5 vertices is self-complementary). We will assume that
k is minimal, i.e., any cycle of L(D(G)) of length ¢t (4 < t < k) has a chord. Let
Cr+1 be formed by disks N™[zg], N™[z1],..., N™*=t[xp_1], N"*[z}] of G, i.e., in
G we have N"i[z;] N N"[z;] = 0 if and only if ¢ = j + 1(mod(k + 1)). Among
all such induced cycles Ciy1 of L(D(G)) we will choose one with minimum
sum o = 19 + 71 + -+ + r%. Clearly, r; > 0 for each ¢. We will show that
ro=r1 =--- =1, = 1 holds.

Assume, without loss of generality, that ro > 1. Consider a neighbor y of x
on a shortest path of G from x( to z2 and a neighbor z of g on a shortest path
of G from xg to x3. Since L(D(G)) has no induced subgraphs isomorphic to Cs, a
cycle of L(D(G)) formed by disks N~ 1[y], N"o~1[z], N"2[x5], N3 [x3], N"* )]
cannot be induced. Therefore, as N [xo] N\N"*[x)] = 0, we must have N™~1[y]N
NT3[z3] # 0 or N~ [2]NN"2[z3] # 0. Let, without loss of generality, N™~1[y]N
N7slzs] # 0.
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Thus, there is a neighbor y of zy such that N™~1[y] N N"2[xs] # () and
N7~y N N™[x3] # (. Next we claim that N™0~1[y] N N"i[z;] # 0 for every
i=4,...,k—1. Let ig (3 <ip < k) be the minimal index such that N"~1[y] N
NTio[x;,] = (). Then, it is easy to see that the disks N7~ 1[y], N™t[z], N"2[z2],
N73[xg],..., N"o[x;,] form an induced cycle in L(D(G)) of length ¢ := ip + 1
with 4 <t < k, and a contradiction with the choice of k arises.

Now, disks N™0~![y] and N"i[z;] intersect if and only if i € {2,3,...,k
—2,k — 1}, ie., i # 1,k. But, then the disks N~ 1[y], N [z1], N"2[x5], N"3
[s], ..., N™1[xg_1], N"¥[z}] of G induce a cycle in L(D(QG)) of length k + 1
and, since the sum of radiuses of these disks is ¢ — 1, a contradiction with the
minimality of o := r¢g + 71 + -+ - + 7 occurs.

Consequently, 1o = r1 = -+ = ry = 1 must hold, implying that Cy41 with
k41 > 4 is also an induced cycle of L(N(G)). The latter contradicts now
with L(NV(G)) ~ G2 being a 4-chordal graph. Obtained contradictions prove the
lemma. O

Combining Lemma [Tl with Lemma Bl we obtain the following results. Notice that
induced subgraphs of weakly chordal graphs are weakly chordal, too.

Theorem 2. For a graph G, L(D(G)) is weakly chordal if and only if G* is
weakly chordal.

Proof. By Lemmal[ll L(D(G)) is 4-chordal if and only if G? is so. Assuming now
that L(D(G)) is 4-chordal, by Lemmal[B L(D(G)) is 4-chordal if and only if G2 is
4-chordal (notice that G2 is an induced subgraph of L(D(G))). Hence, L(D(G))
is weakly chordal if and only if G? is weakly chordal. O

Corollary 4. Let G be a graph having weakly chordal square G?. Then, for any
radius-function v : 'V +— N U {0} defined on the vertex set of G, the graph
L(D(G,r)) is weakly chordal. In particular, if the square G* of some graph G is
weakly chordal, then all even powers G** (k =1,2,...) of G are weakly chordal.

Lemma 4. Let G be the complement of a 4-chordal graph and I'(D(G)) has no
induced subgraphs isomorphic to Cs,Cs. Then, I'(D(G)) is a 4-chordal graph.

Proof of this lemma is omitted. Combining Lemma 2] with Lemma [] we obtain
the following results.

Theorem 3. For a graph G, I'(D(G)) is weakly chordal if and only if G is
weakly chordal.

Corollary 5. For any weakly chordal graph G and any radius-function v : V —
N U {0} defined on the vertex set of G, the graph I'(D(G,r)) is weakly chordal.
In particular, odd powers G***1 (k = 1,2,...) of a weakly chordal graph G are
weakly chordal.

Recall (see, e.g., [9]) that a graph G is distance-hereditary if each induced path
of G is shortest. It is known that any distance-hereditary graph G is weakly
chordal and its square G? is even chordal [3,[8]. Hence the following result holds.
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Corollary 6. For any distance-hereditary graph G and any radius-function r :
V +— N U {0} defined on the vertex set of G, the graph I'(D(G,r)) is weakly
chordal and the graph L(D(G,r)) is chordal. In particular [3[8], odd powers
G+ (k= 1,2,...) of a distance-hereditary graph G are weakly chordal, while
its even powers G2* (k=1,2,...) are chordal.

5 AT-Free Graphs and Cocomparability Graphs

In this section we consider the generalized powers of AT-free graphs, cocompa-
rability graphs and interval graphs.

In a graph G, an asteroidal triple is a triple of vertices such that between any
two there is a path of G that avoids the neighbourhood of the third. A graph G
is asteroidal triple-free (AT-free) if it has no asteroidal triples. It is shown in [12]
that any AT-free graph G = (V, E) admits a so-called strong 2-cocomparability
ordering, i.e., an ordering o := [v1,va,...,v,] of vertices of G such that for any
three vertices z,y, z, if < y < z (z precedes y and y precedes z in the ordering)
and dg(x,z) < 2 then dg(z,y) = 1 or dg(y, z) < 2 must hold. Moreover, such
an ordering of vertices of an AT-free graph G = (V, E) can be found in time
O(IV| + | EJ) [13).

Our next lemma shows that a strong 2-cocomparability ordering of an AT-free
graph satisfies a useful distance property (proof is omitted).

Lemma 5. Let G be an AT-free graph and o be a strong 2-cocomparability or-
dering of vertices of G. If x <y < z and dg(y,z) > 2, then dg(z,y)+da(y,z) <
dg(z, z) + 3.

It is well known (see, e.g., [I6]) that a graph is cocomparability if and only
if it admits a cocomparability ordering, i.e., an ordering o := [v1,va, ..., v,] of
its vertices such that if x < y < z in o and 2z € E(G) then zy € E(G) or
yz € E(G) must hold. Lemma [Blis essential to proving the following result.

Theorem 4. Let G = (V, E) be an AT-free graph and v : V +— N be a radius-
function defined on V. Then, both L(D(G,r)) and I'(D(G,r)) are cocomparabil-
ity graphs.

Proof. Using Lemma 5l we will show that any strong 2-cocomparability ordering
o of vertices of G gives a cocomparability ordering for both L(D(G,r)) and
I'(D(G,r)). In what follows, we will identify a vertex N"(")[v] of L(D(G,r))
(and I'(D(G,r))) with v.

Assume, by way of contradiction, that there exist three vertices z,y, z in
L(D(G,r)) such that z < y < zino, xz € E(L(D(G,r))) but neither zy nor yz is
in E(L(D(G,r))). We know that two vertices u, v € V are adjacent in L(D(G, r))
if and only if dg(u,v) < r(u) + r(v). Hence, we have d(z,y) > r(z) + r(y) + 1,
d(y,z) > r(y) + r(2) + 1 and d(z,2) < r(x) + r(2), ie., d(z,y) + d(y,z) >
d(x, z) + 2r(y) + 2. Since, by the theorem assumption, r(v) > 1 for any v € V|
we obtain d(x, y)+d(y, z) > d(x, z)+4, which is in a contradiction with Lemmal[g]
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(note that d(y,z) > r(y) + r(z) + 1 > 3 > 2). Thus, a strong 2-cocomparability
ordering o of vertices of G must be a cocomparability ordering for L(D(G, 1)),
i.e.,, L(D(G,r)) is a cocomparability graph.

Assume now, by way of contradiction, that there exist three vertices x,y, z
in I'(D(G,r)) such that + < y < z in 0, zz € E(I'(D(G,r))) but neither xy
nor yz is in E(I'(D(G,r))). We know that two vertices u,v € V are adjacent in
I'(D(G,r)) if and only if dg(u,v) < r(u) + r(v)+1. Hence, we have d(z,y) >
r(z) + r(y) + 2, d(y,z) > r(y) + r(z) + 2 and d(x,z) < r(z) + r(z) + 1, ie.,
d(z,y)+d(y, z) > d(z,z)+2r(y)+3. Since, by the theorem assumption, r(v) > 1
for any v € V, we obtain d(z,y)+d(y, z) > d(z, z)+5, which is in a contradiction
with Lemma [ (note that d(y,z) > r(y) + r(z) + 2 > 4 > 2). Thus, a strong 2-

cocomparability ordering o of vertices of G must be a cocomparability ordering
for I'(D(G, 1)), i.e., '(D(G,r)) is a cocomparability graph, too. O

Notice that Theorem Ml is not true if we allow r(v) = 0 for some vertices v of G.
An induced cycle Cs on five vertices is an AT-free graph, however I'(D(Cs, r)),
where r(v) = 0 for each vertex v of C5, is not a cocomparability graph (since
I'(D(C5,1)) ~ C5 and Cj5 is not a cocomparability graph). The graph G shown
in Figure [l is an AT-free graph (even an interval graph), however the graph
L(D(G,r)) shown in that figure contains an asteroidal triple b, ¢, g.

As a corollary, we obtain the following result known from [12].

Corollary 7. [12] If G is an AT-free graph, then G* is a cocomparability graph
for any k > 2.

Recall (see, e.g., [9]) that any cocomparability graph is AT-free. Therefore, Theo-
rem M holds for any cocomparability graph, too. However, for the class of cocom-
parability graphs a slightly stronger result can be proven. In [16], it was shown
that if G is a cocomparability graph and o is its cocomparability ordering, then
x <y < z implies dg(x,y) + da(y, z) < dg(x, z) + 2. Using this stronger version
of Lemma [B] similar to the proof of Theorem [l one can prove the following.

Theorem 5. Let G = (V, E) be a cocomparability graph. Then, for any radius-
functionr : V — N, L(D(G,r)) is a cocomparability graph, and for any radius-
functionr : V — NU{0}, I'(D(G,r)) is a cocomparability graph.

Corollary 8. [16] All powers G* (k > 1) of a cocomparability graph G are
cocomparability, too.

Note that the class of cocomparability graphs contains such known families of
graphs as interval graphs, permutation graphs, trapezoid graphs and m-trapezoid
graphs. Hence, the graphs L(D(G,r)) and I'(D(G,r)) for a graph G from those
families are cocomparability, too. For interval graphs the result can be further
strengthened. An interval graph is the intersection graph of intervals of a line.

Theorem 6. Let G = (V, E) be an interval graph. Then, for any radius-function
r: Vi N, L(D(G,r)) is an interval graph, and for any radius-function r : V —
N U{0}, I'(D(G,r)) is an interval graph.
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Corollary 9. [T4] All powers G* (k > 1) of an interval graph G are interval.

Due to space limitation, we omit results on circular-arc graphs. In the full version
of this paper, we show that for any circular-arc graph G and any radius-function
r:V — N, both graphs L(D(G,r)) and I'(D(G,r)) are circular-arc.

6 Algorithmic Use of the Generalized Powers of Graphs

Based on the results obtained in the previous sections and known results on
ordinary coloring, we deduce the following complexity results for the r-Coloring
and r*-Coloring Problems on the graph families considered in this paper (see
Table [).

Table 1. Complexity results for the r-Coloring and r*-Coloring Problems on the graph
families considered in this paper. ) marking means that r(v) = 0 is not allowed.
Here we define the power-4-chordal (the power-weakly-chordal) graphs as graphs G for
which both G and G? (equivalently, all powers of G) are 4-chordal (respectively, weakly
chordal) graphs. If for a graph G, only G? is 4-chordal (is weakly chordal), then we say
that G is a square-4-chordal (respectively, a square-weakly-chordal) graph.

Graph Complexity of the Complexity of the
class r-Coloring problem r+-Coloring problem
chordal hard to approximate O(nm)
4-chordal hard to approximate P
weakly chordal hard to approximate on?)

square-chordal O(nm) hard to approximate
square-4-chordal P hard to approximate
square-weakly-chordal o(n?) hard to approximate
power-chordal O(nm) O(nm)
power-4-chordal P P
power-weakly-chordal o(n?) on?)
distance-hereditary Oo(n?) o(n®)
AT-free &) 0(n?) ™) 0(n®)
cocomparability &) 0(n?) O(n?)
interval &) 0(n?) O(n?)

circular-arc ) 7 and 3/2-approximation | N Pc and 3/2-approximation

For a given graph G with n vertices and m edges, we first find the distance
matrix of G, then construct the graphs L(D(G,r)) and I'(D(G,r)) using that
matrix in O(n?) time, and finally color L(D(G,r)) and/or I'(D(G,r)) using
some known algorithm (depending on what graph family the graph G is from).
Note that graphs L(D(G,r)) and I'(D(G,r)) may have now O(n?) edges. To
compute the distance matrix, for distance-hereditary graphs and interval graphs
we can use O(n?) time algorithms presented in [17], for other graph families we
use general O(nm) time algorithm. To color chordal graphs (as well as interval
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graphs), we can use a linear (in the size of the constructed graph) time algo-
rithm from [23]. To color weakly chordal graphs, we use an algorithm from [26]
which will color L(D(G,r)) and/or I'(D(G, 1)) in O(n?) time. To color 4-chordal
graphs, we can use general polynomial time coloring algorithm designed in [25]
for all perfect graphs (4-chordal graphs are perfect). To color cocomparability
graphs, we can use O(n?) time algorithm from [30]. According to [1], it is com-
putationally hard to approximately color the even powers of n-vertex chordal
graphs within an ni—e factor, for any € > 0. Consequently, it is computationally
hard to approximately r-color any chordal (hence, any weakly chordal, any 4-
chordal) graph within the same nz~¢ factor. According to [6], to (approximately)
color a dually chordal graph is as hard as to (approximately) color any graph.
Since dually chordal graphs are square-chordal, it is computationally hard to
approximately r+-color any square-chordal (hence, any square-weakly-chordal,
any square-4-chordal) graph. We know [22] that coloring of circular-arc graphs
is an NP-complete problem. Since I'(D(G,r)) ~ G when r(v) = 0 for every
v € V, the general rT-Coloring problem is also NP-complete on circular-arc
graphs. However, we do not know the complexity of the r-Coloring problem on
circular-arc graphs G as the graphs L(D(G,r)) may represent only a subclass of
circular-arc graphs. One can use the circular-arc graph coloring approximation
algorithm of [27] with a performance ratio of 3/2 to get an approximate solution
for the corresponding r-Coloring and/or r*-Coloring problems on circular-arc
graphs with the same performance ratio.

In the full version of this paper, other applications of the generalized powers
of graphs (e.g., to r-packing, ¢-dispersion, k-domination, p-centers, r-clustering,
etc.) are discussed.
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