Skip to main content

Reliable and Efficient Computational Geometry Via Controlled Perturbation

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

Abstract

Most algorithms of computational geometry are designed for the Real-RAM and non-degenerate input. We call such algorithms idealistic. Executing an idealistic algorithm with floating point arithmetic may fail. Controlled perturbation replaces an input x by a random nearby \(\tilde{x}\) in the δ-neighborhood of x and then runs the floating point version of the idealistic algorithm on \(\tilde{x}\). The hope is that this will produce the correct result for \(\tilde{x}\) with constant probability provided that δ is small and the precision L of the floating point system is large enough. We turn this hope into a theorem for a large class of geometric algorithms and describe a general methodology for deriving a relation between δ and L. We exemplify the usefulness of the methodology by examples.

Partially supported by the IST Programme of the EU under Contract No IST-006413, Algorithms for Complex Shapes (ACS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnikel, C., Funke, S., Seel, M.: Exact arithmetic using cascaded computation. In: SocCG, pp. 175–183 (1998)

    Google Scholar 

  2. Burnikel, C., Mehlhorn, K., Schirra, S.: How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 227–239. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Fortune, S., van Wyk, C.: Efficient exact integer arithmetic for computational geometry. In: 7th ACM Conference on Computational Geometry, pp. 163–172 (1993)

    Google Scholar 

  4. Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for Delaunay triangulations. In: SODA, pp. 1047–1056 (2005)

    Google Scholar 

  5. Halperin, Shelton.: A perturbation scheme for spherical arrangements with application to molecular modeling. In: CGTA, vol. 10 (1998)

    Google Scholar 

  6. Halperin, D., Leiserowitz, E.: Controlled perturbation for arrangements of circles. IJCGA 14(4), 277–310 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Halperin, D., Raab, S.: Controlled perturbation for arrangements of polyhedral surfaces with application to swept volumes. In: Halperin’s home page; a preliminary version appeared in SoCG 1999, pp. 163–172 (1999)

    Google Scholar 

  8. Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Comput. Geom. 18(2), 95–123 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jünger, M., Reinelt, G., Zepf, D.: Computing correct Delaunay triangulations. Computing 47, 43–49 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karasick, M., Lieber, D., Nackman, L.R.: Efficient Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics 10(1), 71–91 (1991)

    Article  Google Scholar 

  11. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Mehlhorn, K., Näher, S.: The implementation of geometric algorithms. In: Proceedings of the 13th IFIP World Computer Congress, vol. 1, pp. 223–231. Elsevier, Amsterdam (1994)

    Google Scholar 

  13. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing, p. 1018. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  14. Yap, C.K.: Towards exact geometric computation. In: Proceedings of the 5th Canadian Conference on Computational Geometry (CCCG 1993), pp. 405–419 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehlhorn, K., Osbild, R., Sagraloff, M. (2006). Reliable and Efficient Computational Geometry Via Controlled Perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_27

Download citation

  • DOI: https://doi.org/10.1007/11786986_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics