Abstract
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n 1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per change. The upper bound is valid when changing up to O(n 0.575) entries in a single column of the matrix. Both bounds appear to be the first non-trivial bounds for the problem. The upper bound is valid for arbitrary fields, whereas the lower bound is valid for algebraically closed fields. The upper bound uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.B.: A matrix rank problem. Master’s thesis, University of Waterloo (December 2003)
Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer, Berlin (1997): With the collaboration of Thomas Lickteig
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280 (1990)
Frandsen, G.S., Hansen, J.P., Miltersen, P.B.: Lower bounds for dynamic algebraic problems. Inform. and Comput. 171(2), 333–349 (2001)
Geelen, J.F.: Maximum rank matrix completion. Linear Algebra Appl. 288(1-3), 211–217 (1999)
Harvey, N.J.A., Karger, D.R., Murota, K.: Deterministic network coding by matrix completion. In: SODA 2005: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 489–498 (2005)
Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications. J. Complexity 14(2), 257–299 (1998)
Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theoret. Comput. Sci. 36(2-3), 309–317 (1985)
Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse (extended abstract). In: FOCS 2004: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), Washington, DC, USA, pp. 509–517. IEEE Computer Society Press, Los Alamitos (2004)
Sankowski, P.: Faster dynamic matchings and vertex connectivity (extended abstract) (April 2006)
Schönhage, A.: Unitäre Transformationen grosser Matrizen. Numer. Math. 20, 409–417 (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frandsen, G.S., Frandsen, P.F. (2006). Dynamic Matrix Rank. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_35
Download citation
DOI: https://doi.org/10.1007/11786986_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35904-3
Online ISBN: 978-3-540-35905-0
eBook Packages: Computer ScienceComputer Science (R0)