Skip to main content

New Constructions of Mechanisms with Verification

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

  • 1608 Accesses

Abstract

A social choice function A is implementable with verification if there exists a payment scheme P such that (A,P) is a truthful mechanism for verifiable agents [Nisan and Ronen, STOC 99]. We give a simple sufficient condition for a social choice function to be implementable with verification for comparable types. Comparable types are a generalization of the well-studied one-parameter agents. Based on this characterization, we show that a large class of objective functions μ admit social choice functions that are implementable with verification and minimize (or maximize) μ. We then focus on the well-studied case of one-parameter agents. We give a general technique for constructing efficiently computable social choice functions that minimize or approximately minimize objective functions that are non-increasing and neutral (these are functions that do not depend on the valuations of agents that have no work assigned to them). As a corollary we obtain efficient online and offline mechanisms with verification for some hard scheduling problems on related machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nisan, N., Ronen, A.: Algorithmic Mechanism Design. In: Proc. of the STOC, pp. 129–140 (1999)

    Google Scholar 

  2. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Proc. of FOCS, pp. 482–491 (2001)

    Google Scholar 

  3. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verification for one-parameter agents. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Myerson, R.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance, 8–37 (1961)

    Google Scholar 

  6. Clarke, E.: Multipart Pricing of Public Goods. Public Choice, 17–33 (1971)

    Google Scholar 

  7. Groves, T.: Incentive in Teams. Econometrica 41, 617–631 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lavi, R., Mu’Alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: Proc. of FOCS (2003)

    Google Scholar 

  9. Gui, H., Muller, R., Vohra, R.V.: Dominant strategy mechanisms with multidimensional types. Technical report (2004)

    Google Scholar 

  10. Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proc. of EC, pp. 286–293 (2005)

    Google Scholar 

  11. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: On designing truthful mechanisms for online scheduling. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 3–17. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Hajiaghayi, M.T., Kleinberg, R.D., Mahdian, M., Parkes, D.C.: Online auctions with re-usable goods. In: Proc. of EC 2005, pp. 165–174 (2005)

    Google Scholar 

  13. Porter, R.: Mechanism design for online real-time scheduling. In: Proc. of EC 2004, pp. 61–70 (2004)

    Google Scholar 

  14. Mu’Alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. In: Proc. of 18th AAAI, pp. 379–384 (2002)

    Google Scholar 

  15. Rochet, J.C.: A condition for rationalizability in a quasi-linear context. Journal of Mathematical Economics 16, 191–200 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  17. Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Chudak, F., Shmoys, D.: Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. Journal of Algorithms 30(2), 323–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auletta, V., De Prisco, R., Penna, P., Persiano, G., Ventre, C. (2006). New Constructions of Mechanisms with Verification. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_52

Download citation

  • DOI: https://doi.org/10.1007/11786986_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics