Abstract
We study random instances of a general graph partitioning problem: the vertex set of the random input graph G consists of k classes V 1,...,V k , and V i -V j -edges are present with probabilities p ij independently. The main result is that with high probability a partition S 1,...,S k of G that coincides with V 1,...,V k on a huge subgraph core(G) can be computed in polynomial time via spectral techniques. The result covers the case of sparse graphs (average degree O(1)) as well as the massive case (average degree #V(G)–O(1)). Furthermore, the spectral algorithm is adaptive in the sense that it does not require any information about the desired partition beyond the number k of classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26, 1733–1748 (1997)
Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random Structures and Algorithms 13, 457–466 (1998)
Boppana, R.: Eigenvalues and graph bisection: an average-case analysis. In: Proc. 28th FOCS, pp. 280–285 (1987)
Chen, H., Frieze, A.: Coloring bipartite hypergraphs. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 345–358. Springer, Heidelberg (1996)
Coja-Oghlan, A.: A spectral heuristic for bisecting random graphs. In: Proc.16th SODA, pp. 850–859 (2005)
Dasgupta, A., Hopcroft, J.E., McSherry, F.: Spectral Partitioning of Random Graphs. In: Proc. 45th FOCS, pp. 529–537 (2004)
Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs. Random Structures and Algorithms 27, 251–275 (2005)
Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: Proc.14th SODA, pp. 357–363 (2003)
Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)
McSherry, F.: Spectral Partitioning of Random Graphs. In: Proc. 42nd FOCS, pp. 529–537 (2001)
Pothen, A., Simon, H.D., Kang-Pu, L.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal.Appl. 11, 430–452 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coja-Oghlan, A. (2006). An Adaptive Spectral Heuristic for Partitioning Random Graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_60
Download citation
DOI: https://doi.org/10.1007/11786986_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35904-3
Online ISBN: 978-3-540-35905-0
eBook Packages: Computer ScienceComputer Science (R0)