Skip to main content

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive Or

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4052))

Included in the following conference series:

  • 6122 Accesses

Abstract

Security of a cryptographic protocol for a bounded number of sessions is usually expressed as a symbolic trace reachability problem. We show that symbolic trace reachability for well-defined protocols is decidable in presence of the exclusive or theory in combination with the homomorphism axiom. These theories allow us to model basic properties of important cryptographic operators.

This trace reachability problem can be expressed as a system of symbolic deducibility constraints for a certain inference system describing the capabilities of the attacker. One main step of our proof consists in reducing deducibility constraints to constraints for deducibility in one step of the inference system. This constraint system, in turn, can be expressed as a system of quadratic equations of a particular form over ℤ/2ℤ[h], the ring of polynomials in one indeterminate over the finite field ℤ/2ℤ. We show that satisfiability of such systems is decidable.

This work has been partly supported by the RNTL project PROUVÉ 03V360 and the ACI-SI Rossignol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: Proc. of 18th Annual IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 261–270. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  2. Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 639–651. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: Proc. of 18th Annual IEEE Symposium on Logic in Computer Science LICS 2003, pp. 271–280. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  4. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

    Google Scholar 

  5. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Delaune, S.: Easy intruder deduction problems with homomorphisms. Information Processing Letters 97(6), 213–218 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Delaune, S.: An undecidability result for AGh. Research Report LSV-06-02, LSV, ENS Cachan, France (2006)

    Google Scholar 

  8. Delaune, S., Jacquemard, F.: A decision procedure for the verification of security protocols with explicit destructors. In: Proc. of 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 278–287. ACM Press, New York (2004)

    Chapter  Google Scholar 

  9. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis in presence of a homomorphism operator and exclusive or. In: Research Report LSV-05-20 (2005)

    Google Scholar 

  10. Dolev, D., Yao, A.: On the security of public key protocols. In: Proc. of the 22nd Symp. on Foundations of Computer Science, pp. 350–357. IEEE Computer Society Press, Los Alamitos (1981)

    Google Scholar 

  11. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded security protocols. In: Proc. Workshop on formal methods in security protocols (1999)

    Google Scholar 

  12. Guo, Q., Narendran, P., Wolfram, D.A.: Complexity of nilpotent unification and matching problems. Information and Computation 162(1-2), 3–23 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 308–322. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of exclusive-or with distributive encryption. In: Research Report LSV-05-19, ENS Cachan (2005)

    Google Scholar 

  15. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: Proc.of 8th ACM Conference on Computer and Communications Security (CCS 2001), ACM Press, New York (2001)

    Google Scholar 

  16. Millen, J., Shmatikov, V.: Symbolic protocol analysis with an Abelian group operator or Diffie-Hellman exponentiation. Journal of Computer Security 13(3), 515–564 (2005)

    Google Scholar 

  17. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions, composed keys is NP-complete. Theoretical Computer Science 1-3(299), 451–475 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R. (2006). Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive Or . In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_12

Download citation

  • DOI: https://doi.org/10.1007/11787006_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35907-4

  • Online ISBN: 978-3-540-35908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics