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Recursive Concurrent Stochastic Games

Kousha Etessami1 and Mihalis Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Department of Computer Science, Columbia University

Abstract. We study Recursive Concurrent Stochastic Games (RCSGs),
extending our recent analysis of recursive simple stochastic games [14, 15]
to a concurrent setting where the two players choose moves simultane-
ously and independently at each state. For multi-exit games, our earlier
work already showed undecidability for basic questions like termination,
thus we focus on the important case of single-exit RCSGs (1-RCSGs).
We first characterize the value of a 1-RCSG termination game as the least
fixed point solution of a system of nonlinear minimax functional equa-
tions, and use it to show PSPACE decidability for the quantitative termi-
nation problem. We then give a strategy improvement technique, which
we use to show that player 1 (maximizer) has ε-optimal randomized
Stackless & Memoryless (r-SM) strategies, while player 2 (minimizer)
has optimal r-SM strategies. Thus, such games are r-SM-determined.
These results mirror and generalize in a strong sense the randomized
memoryless determinacy results for finite stochastic games, and extend
the classic Hoffman-Karp [19] strategy improvement approach from the
finite to an infinite state setting. The proofs in our infinite-state setting
are very different however.
We show that our upper bounds, even for qualitative termination, can not
be improved without a major breakthrough, by giving two reductions:
first a P-time reduction from the long-standing square-root sum problem
to the quantitative termination decision problem for finite concurrent
stochastic games, and then a P-time reduction from the latter problem
to the qualitative termination problem for 1-RCSGs.

1 Introduction

In recent work we have studied Recursive Markov Decision Processes (RMDPs)
and turn-based Recursive Simple Stochastic Games (RSSGs) ([14, 15]), provid-
ing a number of strong upper and lower bounds for their analysis. These de-
fine infinite-state (perfect information) stochastic games that extend Recursive
Markov Chains (RMCs) ([12, 13]) with nonprobabilistic actions controlled by
players. Here we extend our study to Recursive Concurrent Stochastic Games
(RCSGs), where the two players choose moves simultaneously and independently
at each state, unlike RSSGs where only one player can move at each state. RC-
SGs define a class of infinite-state zero-sum (imperfect information) stochastic
games that can naturally model probabilistic procedural programs and other
systems involving both recursive and probabilistic behavior, as well as concur-
rent interactions between the system and the environment. Informally, all such
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recursive models consist of a finite collection of finite state component models
(of the same type) that can call each other in a potentially recursive manner.
For multi-exit RMDPs and RSSGs, our earlier work already showed that basic
questions such as qualitative (i.e. almost sure) termination are already unde-
cidable, whereas we gave strong upper bounds for the important special case of
single-exit RMDPs and RSSGs (called 1-RMDPs and 1-RSSGs).

Our focus is thus on single-exit RCSGs (1-RCSGs). These models correspond
to a concurrent game version of multi-type Branching Processes and Stochastic
Context-Free Grammars, both of which are important and extensively studied
stochastic processes with many applications including in population genetics,
nuclear chain reactions, computational biology, and natural language processing
(see, e.g., [18, 20] and other references in [12, 14]). It is very natural to con-
sider game extensions to these stochastic models. Branching processes model
the growth of a population of entities of distinct types. In each generation each
entity of a given type gives rise, according to a probability distribution, to a
multi-set of entities of distinct types. A branching process can be mapped to a
1-RMC such that the probability of eventual extinction of a species is equal to
the probability of termination in the 1-RMC. Modeling the process in a context
where external agents can influence the evolution to bias it towards extinction or
towards survival leads naturally to a game. A 1-RCSG models the process where
the evolution of some types is affected by the concurrent actions of external
favorable and unfavorable agents (forces).

In [14], we showed that for the 1-RSSG termination game, where the goal
of player 1 (2) is to maximize (minimize) the probability of termination start-
ing at a given vertex (in the empty calling context), we can decide in PSPACE
whether the value of the game is ≥ p for a given probability p, and we can ap-
proximate this value (which can be irrational) to within given precision with the
same complexity. We also showed that both players have optimal determinis-
tic Stackless and Memoryless (SM) strategies in the 1-RSSG termination game;
these are strategies that depend neither on the history of the game nor on the
call stack at the current state. Thus from each vertex belonging to the player,
such a strategy deterministically picks one of the outgoing transitions.

Already for finite-state concurrent stochastic games (CSGs), even under the
simple termination objective, the situation is rather different. Memoryless strate-
gies do suffice for both players, but randomization of strategies is necessary,
meaning we can’t hope for deterministic ε-optimal strategies for either player.
Moreover, player 1 (the maximizer) can only attain ε-optimal strategies, for
ε > 0, whereas player 2 (the minimizer) does have optimal randomized mem-
oryless strategies (see, e.g., [16, 10]). Another important result for finite CSGs
is the classic Hoffman-Karp [19] strategy improvement method, which provides,
via simple local improvements, a sequence of randomized memoryless strategies
which yield payoffs that converge to the value of the game.

Here we generalize all these results to the infinite-state setting of 1-RCSG ter-
mination games. We first characterize values of the 1-RCSG termination game as
the least fixed point solution of a system of nonlinear minimax functional equa-



tions. We use this to show PSPACE decidability for the quantitative termination
problem (is the value of the game ≥ r for given rational r), as well as PSPACE
algorithms for approximating the termination probabilities of 1-RCSGs to within
a given number of bits of precision, via results for the existential theory of reals.

We then proceed to our technically most involved result, a strategy improve-
ment technique for 1-RCSG termination games. We use this to show that in
these games player 1 (maximizer) has ε-optimal randomized-Stackless & Mem-
oryless (r-SM for short) strategies, whereas player 2 (minimizer) has optimal
r-SM strategies. Thus, such games are r-SM-determined. These results mirror
and generalize in a very strong sense the randomized memoryless determinacy
results known for finite stochastic games. Our technique extends Hoffman-Karp’s
strategy improvement method for finite CSGs to an infinite state setting. How-
ever, the proofs in our infinite-state setting are very different. We rely on subtle
analytic properties of certain power series that arise from studying 1-RCSGs.

Note that our PSPACE upper bounds for the quantitative termination prob-
lem for 1-RCSGs can not be improved to NP without a major breakthrough,
since already for 1-RMCs we showed in [12] that the quantitative termination
problem is at least as hard as the square-root sum problem (see [12]). In fact,
here we show that even the qualitative termination problem for 1-RCSGs, where
the problem is to decide whether the value of the game is exactly 1, is already
as hard as the square-root sum problem, and moreover, so is the quantitative
termination decision problem for finite CSGs. We do this via two reductions: we
give a P-time reduction from the square-root sum problem to the quantitative
termination decision problem for finite CSGs, and a P-time reduction from the
quantitative finite CSG termination problem to the qualitative 1-RCSG termi-
nation problem. Note that this is despite the fact that in recent work Chatterjee
et. al. ([6]) have shown that the approximate quantitative problems for finite
CSGs, including for termination and for more general parity winning conditions,
are in NP∩coNP. In other words, we show that quantitative decision problems
for finite CSGs will require surmounting significant new difficulties that don’t
arise for approximation of game values.

We note that, as is known already for finite concurrent games ([5]), proba-
bilistic nodes do not add any power to these games, because the stochastic nature
of all the games we consider can in fact be simulated by concurrency alone. The
same is true for 1-RCSGs. Specifically, given a finite CSG (or 1-RCSG), G, there
is a P-time reduction to a finite concurrent game (or 1-RCG, respectively) F (G),
without any probabilistic vertices, such that the value of the game G is exactly
the same as the value of the game F (G).

Related work. Stochastic games go back to Shapley [24], who considered
finite concurrent stochastic games with (discounted) rewards. See, e.g., [16] for
a recent book on stochastic games. Turn-based “simple” finite stochastic games
were studied by Condon [8]. As mentioned, we studied RMDPs and (turn-based)
RSSGs and their quantitative and qualitative termination problems in [14, 15].
In [15] we showed that the qualitative termination problem for finite 1-RMDPs is
in P, and for 1-RSSGs is in NP∩coNP. Our earlier work [12, 13] developed theory



and algorithms for Recursive Markov Chains (RMCs), and [11, 3] have studied
probabilistic Pushdown Systems which are essentially equivalent to RMCs.

Finite-state concurrent stochastic games have been studied extensively in re-
cent CS literature (see, e.g., [6, 10, 9]). In particular, [6] have shown that for finite
CSGs the approximate reachability problem and approximate parity game prob-
lem are in NP∩coNP; however, their results do not resolve the decision problem,
which asks whether the value of the game is ≥ r. (Their approximation theorem
(Thm 3.3, part 1.) in its current form is slightly misstated in a way that would
actually imply that the decision problem is also in NP∩coNP, but this will be
corrected in a journal version of their paper ([5]).) Indeed, we show here that the
quantitative decision problem for finite CSGs, as well as the qualitative problem
for 1-RCSGs, are as hard as the square-root sum problem, for which containment
even in NP is a long standing open problem. Thus our upper bound here, even
for the qualitative termination problem for 1-RCSGs, can not be improved to NP
without a major breakthrough. Unlike for 1-RCSGs, the qualitative termination
problem for finite CSGs is known to be decidable in P-time ([9]). We note that
in recent work Allender et. al. [1] have shown that the square-root sum problem
is in (the 4th level of) the “Counting Hierarchy” CH, which is inside PSPACE,
but it remains a major open problem to bring this complexity down to NP.

2 Basics

Let Γ1 and Γ2 be finite sets constituting the move alphabet of players 1 and
2, respectively. A Recursive Concurrent Stochastic Game (RCSG) is a tuple
A = (A1, . . . , Ak), where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi)
consists of:
1. A set Ni of nodes, with a distinguished subset Eni of entry nodes and a
(disjoint) subset Exi of exit nodes.
2. A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every
box (the index of) a component. To each box b ∈ Bi, we associate a set of call
ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb =
{(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈Bi

Callb, Returni = ∪b∈Bi
Returnb, and

let Qi = Ni∪Calli∪Returni be the set of all nodes, call ports and return ports;
we refer to these as the vertices of component Ai.
3. A mapping pli : Qi 7→ {0, play} that assigns to every vertex u a type describing
how the next transition is chosen: if pli(u) = 0 it is chosen probabilistically
and if pli(u) = play it is determined by moves of the two players. Vertices
u ∈ (Exi ∪ Calli) have no outgoing transitions; for them we let pli(u) = 0.
4. A transition relation δi ⊆ (Qi × (R ∪ (Γ1 × Γ2)) × Qi), where for each tuple
(u, x, v) ∈ δi, the source u ∈ (Ni\Exi)∪Returni, the destination v ∈ (Ni\Eni)∪
Calli, where if pl(u) = 0 then x is a real number pu,v ∈ [0, 1] (the transition
probability), and if pl(u) = play then x = (γ1, γ2) ∈ Γ1 × Γ2. We assume that
each vertex u ∈ Qi has associated with it a set Γu

1 ⊆ Γ1 and a set Γu
2 ⊆ Γ2, which

constitute player 1 and 2’s legal moves at vertex u. Thus, if (u, x, v) ∈ δi and
x = (γ1, γ2) then (γ1, γ2) ∈ Γu

1 × Γu
2 . Additionally, for each vertex u and each

x ∈ Γu
1 ×Γu

2 , we assume there is exactly 1 transition of the form (u, x, v) in δi. For



computational purposes we assume that the given probabilities pu,v are rational.
Furthermore they must satisfy the consistency property: for every u ∈ pl−1(0),∑

{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or exit node, neither of which
have outgoing transitions, in which case by default

∑
v′ pu,v′ = 0.

We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the
union over all components. Thus, eg. N = ∪k

i=1Ni is the set of all nodes of A,
δ = ∪k

i=1δi the set of all transitions, etc.
An RCSG A defines a global denumerable stochastic game MA = (V,∆, pl)

as follows. The global states V ⊆ B∗×Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. More
precisely, the states V ⊆ B∗ × Q and transitions ∆ are defined inductively as
follows: 1. 〈ε, u〉 ∈ V , for u ∈ Q (ε denotes the empty string.); 2. if 〈β, u〉 ∈ V &

(u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ ∆; 3. if 〈β, (b, en)〉 ∈ V , with
(b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆; 4. if 〈βb, ex〉 ∈
V , & (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆.
Item 1. corresponds to the possible initial states, item 2. corresponds to control
staying within a component, item 3. is when a new component is entered via a
box, item 4. is when control exits a box and returns to the calling component. The
mapping pl : V 7→ {0, play} is given by pl(〈β, u〉) = pl(u). The set of vertices
V is partitioned into V0, Vplay, where V0 = pl−1(0) and Vplay = pl−1(play).

We consider MA with various initial states of the form 〈ε, u〉, denoting this by
Mu

A. Some states of MA are terminating states and have no outgoing transitions.
These are states 〈ε, ex〉, where ex is an exit node. If we wish to view MA as a
non-terminating CSG, we can consider the terminating states as absorbing states
of MA, with a self-loop of probability 1.

An RCSG where |Γ2| = 1 (i.e., where player 2 has only one action) is called a
maximizing Recursive Markov Decision Process (RMDP), likewise, when |Γ1| =
1 is a minimizing RMDP. An RSSG where |Γ1| = |Γ2| = 1 is essentially a
Recursive Markov Chain ([12, 13]).

Our goal is to answer termination questions for RCSGs of the form: “Does
player 1 have a strategy to force the game to terminate (i.e., reach node 〈ε, ex〉),
starting at 〈ε, u〉, with probability ≥ p, regardless of how player 2 plays?”.

First, some definitions: a strategy σ for player i, i ∈ {1, 2}, is a function
σ : V ∗Vplay 7→ D(Γi), where D(Γi) denotes the set of probability distributions
on the finite set of moves Γi. In other words, given a history ws ∈ V ∗Vplay, and
a strategy σ for, say, player 1, σ(ws)(γ) defines the probability with which player
1 will play move γ. Moreover, we require that the function σ has the property
that for any global state s = 〈β, u〉, with pl(u) = play, σ(ws) ∈ D(Γu

i ). In other
words, the distribution has support only over eligible moves at vertex u.

Let Ψi denote the set of all strategies for player i. Given a history ws ∈
V ∗Vplay of play so far, and given a strategy σ ∈ Ψ1 for player 1, and a strategy
τ ∈ Ψ2 for player 2, the strategies determine a distribution on the next move
of play to a new global state, namely, the transition (s, (γ1, γ2), s′) ∈ ∆ has
probability σ(ws)(γ1) ∗ τ(ws)(γ2). This way, given a start node u, a strategy
σ ∈ Ψ1, and a strategy τ ∈ Ψ2, we define a new Markov chain (with initial state



u) Mu,σ,τ
A = (S,∆′). The states S ⊆ 〈ε, u〉V ∗ of Mu,σ,τ

A are non-empty sequences
of states of MA, which must begin with 〈ε, u〉. Inductively, if ws ∈ S, then: (0)
if s ∈ V0 and (s, ps,s′ , s′) ∈ ∆ then wss′ ∈ S and (ws, ps,s′ , wss′) ∈ ∆′; (1) if
s ∈ Vplay, where (s, (γ1, γ2), s′) ∈ ∆, then if σ(ws)(γ1) > 0 and τ(ws)(γ2) > 0
then wss′ ∈ S and (ws, p, wss′) ∈ ∆′, where p = σ(ws)(γ1) ∗ τ(ws)(γ2).

Given initial vertex u, and final exit ex in the same component, and given
strategies σ ∈ Ψ1 and τ ∈ Ψ2, for k ≥ 0, let qk,σ,τ

(u,ex) be the probability that,
in Mu,σ,τ

A , starting at initial state 〈ε, u〉, we will reach a state w〈ε, ex〉 in at
most k “steps” (i.e., where |w| ≤ k). Let q∗,σ,τ

(u,ex) = limk→∞ qk,σ,τ
(u,ex) be the proba-

bility of ever terminating at ex, i.e., reaching 〈ε, ex〉. (Note, the limit exists:
it is a monotonically non-decreasing sequence bounded by 1). Let qk

(u,ex) =

supσ∈Ψ1
infτ∈Ψ2 qk,σ,τ

(u,ex) and let q∗(u,ex) = supσ∈Ψ1
infτ∈Ψ2 q∗,σ,τ

(u,ex). For a strategy

σ ∈ Ψ1, let qk,σ
(u,ex) = infτ∈Ψ2 qk,σ,τ

(u,ex), and let q∗,σ(u,ex) = infτ∈Ψ2 q∗,σ,τ
(u,ex). Lastly, given

a strategy τ ∈ Ψ2, let qk,·,τ
(u,ex) = supσ∈Ψ1

qk,σ,τ
(u,ex), and let q∗,·,τ(u,ex) = supσ∈Ψ1

q∗,σ,τ
(u,ex).

From, general determinacy results (e.g., “Blackwell determinacy” [22] which
applies to all Borel two-player zero-sum stochastic games with countable state
spaces; see also [21]) it follows that the games MA are determined, meaning:
supσ∈Ψ1

infτ∈Ψ2 q∗,σ,τ
(u,ex) = infτ∈Ψ2 supσ∈Ψ1

q∗,σ,τ
(u,ex).

We call a strategy σ for either player a (randomized) Stackless and Memory-
less (r-SM) strategy if it neither depends on the history of the game, nor on the
current call stack. In other words, a r-SM strategy σ for player i is given by a
function σ : Q 7→ D(Γi), which maps each vertex u of the RCSG to a probability
distribution σ(u) ∈ D(Γu

i ) on the moves available to player i at vertex u.
We are interested in the following computational problems.

(1) The qualitative termination problem: Is q∗(u,ex) = 1?
(2) The quantitative termination (decision) problem: given r ∈ [0, 1], is q∗(u,ex) ≥

r? The approximate version: approximate q∗(u,ex) to within desired precision.

As mentioned, for multi-exit RCSGs these are all undecidable. Thus we focus
on single-exit RCSGs (1-RCSGs), where every component has one exit. Since for
1-RCSGs it is always clear which exit we wish to terminate at starting at vertex
u (there is only one exit in u’s component), we abbreviate q∗(u,ex), q

∗,σ
(u,ex), etc., as

q∗u, q∗,σu , etc., and we likewise abbreviate other subscripts.

3 Nonlinear minimax equations for 1-RCSGs

In ([14]) we defined a monotone system SA of nonlinear min-& -max equations
for 1-RSSGs, and showed that its least fixed point solution yields the desired
probabilities q∗u. Here we generalize these to nonlinear minimax systems for 1-
RCSGs. Let us use a variable xu for each unknown q∗u, and let x be the vector
of all xu , u ∈ Q. The system SA has one equation of the form xu = Pu(x) for
each vertex u. Suppose that u is in component Ai with (unique) exit ex. There
are 4 cases based on the “Type” of u.
1. u ∈ Type1: u = ex. In this case: xu = 1.



2. u ∈ Typerand: pl(u) = 0 & u ∈ (Ni\{ex})∪Returni: xu =
∑

{v|(u,pu,v,v)∈δ} pu,vxv.

(If u has no outgoing transitions, this equation is by definition xu = 0.)
3. u ∈ Typecall: u = (b, en) is a call port: x(b,en) = xen · x(b,ex′), where ex′ ∈

ExY (b) is the unique exit of AY (b).
4. u ∈ Typeplay: xu = Val(Au(x)).

We have to define this case. Given a value vector x, and a play vertex u,
consider the zero-sum matrix game given by matrix Au(x), whose rows are
indexed by player 1’s moves Γu

1 from node u, and whose columns are in-
dexed by player 2’s moves Γu

2 . The payoff to player 1 under the pair of
deterministic moves γ1 ∈ Γu

1 , and γ2 ∈ Γu
2 , is given by (Au(x))γ1,γ2 := xv,

where (u, (γ1, γ2), v) ∈ δ. Let Val(Au(x)) be the value of this zero-sum ma-
trix game. By von Neumann’s minmax theorem, the value and optimal mixed
strategies exist, and they can be obtained by solving a set of linear inequality
constraints with coefficients given by the xi’s.

In vector notation, we denote the system SA by x = P (x). Given 1-exit RCSG
A, we can easily construct this system. Note that the operator P : Rn

≥0 7→ Rn
≥0

is monotone: for x, y ∈ Rn
≥0, if x ≤ y then P (x) ≤ P (y). This follows because for

two game matrices A and B of the same dimensions, if A ≤ B (i.e., Ai,j ≤ Bi,j

for all i and j), then Val(A) ≤ Val(B). Note that by definition of Au(x), for
x ≤ y, Au(x) ≤ Au(y). We now identify a particular solution to x = P (x), called
the Least Fixed Point (LFP) solution, which gives precisely the termination game
values. Define P 1(x) = P (x), and define P k(x) = P (P k−1(x)), for k > 1. Let
q∗ ∈ Rn denote the n-vector q∗u, u ∈ Q (using the same indexing as used for x).
For k ≥ 0, let qk denote, similarly, the n-vector qk

u, u ∈ Q.

Theorem 1. Let x = P (x) be the system SA associated with 1-RCSG A. Then
q∗ = P (q∗), and for all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ ≤ q′ (i.e., q∗ is the Least
Fixed Point, of P : Rn

≥0 7→ Rn
≥0). Moreover, limk→∞ P k(0) ↑ q∗, i.e., the “value

iteration” sequence P k(0) converges monotonically to the LFP, q∗.

The proof is omitted due to space constraints. We will need an important fact
established in the proof: suppose for some q′ ∈ Rn

≥0, q′ = P (q′). Let τ ′ be
the r-SM strategy for player 2 that always picks, at any state 〈β, u〉, for vertex
u ∈ pl−1(play), the mixed 1-step strategy which is an optimal minimax strategy
in the matrix game Au(q′). Then q∗,·,τ

′ ≤ q′. In other words, τ ′ achieves a value
≤ q′u for the game starting from every vertex u (in the empty context).

Theorem 2. Given a 1-exit RCSG A and a rational probability p, there is a
PSPACE algorithm to decide whether q∗u ≤ p. The running time is O(|A|O(n))
where n is the number of variables in x = P (x). We can also approximate q∗ to
within a given number of bits i of precision (i given in unary), in PSPACE and
in time O(i|A|O(n)).

Proof. Using the system x = P (x), we can express facts such as q∗u ≤ c as

∃x1, . . . , xn

n∧
i=1

(xi = Pi(x1, . . . , xn)) ∧ xu ≤ c



We only need to show how to express equations of the form xv = Val(Av(x))
in the existential theory of reals. We can then appeal to well known results for
deciding that theory ([4, 23]). But this is a standard fact in game theory (see,
e.g., [2, 16, 10] where it is used for finite CSGs). Namely, the minimax theorem
and its LP encoding allow the predicate “y = Val(Av(x))” to be expressed as
an existential formula ϕ(y, x) in the theory of reals with free variables y and
x1, . . . , xn, such that for every x ∈ Rn, there exists a unique y (the game value)
satisfying ϕ(y,x). To approximate the game values within given precision we
can do binary search using such queries. ut

4 Strategy improvement & randomized-SM-determinacy

The proof of Theorem 1 implies the following (see discussion after Thm 1):

Corollary 1. In every 1-RCSG termination game, player 2 (the minimizer) has
an optimal r-SM strategy.

Proof. Consider the strategy τ ′ in the discussion after Theorem 1, chosen not
for just any fixed point q′, but for q∗ itself. That strategy is r-SM. ut

Player 1 does not have optimal r-SM strategies, not even in finite concurrent
stochastic games (see, e.g., [16, 10]). We next establish that it does have finite
r-SM ε-optimal strategies, meaning that it has, for every ε > 0, a r-SM strategy
that guarantees a value of at least q∗u − ε, starting from every vertex u in the
termination game. We say that a game is r-SM-determined if, letting Ψ ′

1 and
Ψ ′

2 denote the set of r-SM strategies for players 1 and 2, respectively, we have
supσ∈Ψ ′

1
infτ∈Ψ ′

2
q∗,σ,τ
u = infτ∈Ψ ′

2
supσ∈Ψ ′

1
q∗,σ,τ
u .

Theorem 3.
1. (Strategy Improvement) Starting at any r-SM strategy σ0 for player 1, via

local strategy improvement steps at individual vertices, we can derive a series
of r-SM strategies σ0, σ1, σ2, . . ., such that for all ε > 0, there exists i ≥ 0
such that for all j ≥ i, σj is an ε-optimal strategy for player 1 starting at
any vertex, i.e., q

∗,σj
u ≥ q∗u − ε for all vertices u.

Each strategy improvement step involves solving the quantitative termination
problem for a corresponding 1-RMDP. Thus, for classes where this problem
is known to be in P-time (such as linearly-recursive 1-RMDPs, [14]), strategy
improvement steps can be carried out in polynomial time.

2. Player 1 has ε-optimal r-SM strategies, for all ε > 0, in 1-RCSG termination
games.

3. 1-RCSG termination games are r-SM-determined.

Proof. Note that (2.) follows immediately from (1.), and (3.) follows because by
Corollary 1, player 2 has an optimal r-SM strategy and thus
supσ∈Ψ ′

1
infτ∈Ψ ′

2
q∗,σ,τ
u = infτ∈Ψ ′

2
supσ∈Ψ ′

1
q∗,σ,τ
u .

Let σ be any r-SM strategy for player 1. Consider q∗,σ. First, let us note that
if q∗,σ = P (q∗,σ) then q∗,σ = q∗. This is so because, by Theorem 1, q∗ ≤ q∗,σ,



and on the other hand, σ is just one strategy for player 1, and for every vertex
u, q∗u = supσ′∈Ψ1

infτ∈Ψ2 q∗,σ
′,τ

u ≥ infτ∈Ψ2 q∗,σ,τ
u = q∗,σu .

Next we claim that, for all vertices u 6∈ Typeplay, q∗,σu satisfies its equation
in x = P (x). In other words, q∗,σu = Pu(q∗,σ). To see this, note that for vertices
u 6∈ Typeplay, no choice of either player is involved, thus the equation holds
by definition of q∗,σ. Thus, the only equations that may fail are those for u ∈
Typeplay, of the form xu = Val(Au(x)). We need the following (proof omitted).

Lemma 1. For any r-SM strategy σ for player 1, and for any u ∈ Typeplay,
q∗,σu ≤ Val(Au(q∗,σ)).

Now, suppose that for some u ∈ Typeplay, q∗,σu 6= V al(Au(q∗,σ)). Thus by the
lemma q∗,σu < V al(Au(q∗,σ)). Consider a revised r-SM strategy for player 1, σ′,
which is identical to σ, except that locally at vertex u the strategy is changed so
that σ′(u) = p∗,u,σ, where p∗,u,σ ∈ D(Γu

1 ) is an optimal mixed minimax strategy
for player 1 in the matrix game Au(q∗,σ). We will show that switching from σ
to σ′ will improve player 1’s payoff at vertex u, and will not reduce its payoff at
any other vertex.

Consider a parameterized 1-RCSG, A(t), which is identical to A, except that
u is a randomizing vertex, all edges out of vertex u are removed, and replaced by
a single edge labeled by probability variable t to the exit of the same component,
and an edge with remaining probability 1− t to a dead vertex. Fixing the value
t determines an 1-RCSG, A(t). Note that if we restrict the r-SM strategies σ or
σ′ to all vertices other than u, then they both define the same r-SM strategy for
the 1-RCSG A(t). For each vertex z and strategy τ of player 2, define q∗,σ,τ,t

z to
be the probability of eventually terminating starting from 〈ε, z〉 in the Markov
chain Mz,σ,τ

A(t) . Let fz(t) = infτ∈Ψ2 q∗,σ,τ,t
z . Recall that σ′(u) = p∗,u,σ ∈ D(Γu

1 )
defines a probability distribution on the actions available to player 1 at vertex
u. Thus p∗,u,σ(γ1) is the probability of action γ1 ∈ Γ1. Let γ2 ∈ Γ2 be any
action of player 2 for the 1-step zero-sum game with game matrix Au(q∗,σ). Let
w(γ1, γ2) denote the vertex such that (u, (γ1, γ), w(γ1, γ2)) ∈ δ. Let hγ2(t) =∑

γ1∈Γ1
p∗,u,σ(γ1)fw(γ1,γ2)(t).

Lemma 2. Fix the vertex u. Let ϕ : R 7→ R be any function ϕ ∈ {fz | z ∈
Q} ∪ {hγ | γ ∈ Γu

2 }. The following properties hold:

1. If ϕ(t) > t at some point t ≥ 0, then ϕ(t′) > t′ for all 0 ≤ t′ < t.
2. If ϕ(t) < t at some point t ≥ 0, then ϕ(t′) < t′ for all 1 > t′ > t.

Proof. First, we prove this for ϕ = fz, for some vertex z.
Note that, once player 1 picks a r-SM strategy, a 1-RCSG becomes a 1-

RMDP. By a result of [14], player 2 has an optimal deterministic SM response
strategy. Furthermore, there is such a strategy that is optimal regardless of the
starting vertex. Thus, for any value of t, player 2 has an optimal deterministic SM
strategy τt, such that for any start vertex z, we have τt = arg minτ∈Ψ2 q∗,σ,τ,t

z . Let
g(z,τ)(t) = q∗,σ,τ,t

z , and let dΨ2 be the (finite) set of deterministic SM strategies
of player 2. Then fz(t) = minτ∈dΨ2 gz,τ (t). Now, note that the function gz,τ (t)



is the probability of reaching an exit in an RMC starting from a particular
vertex. Thus, by [12], gz,τ (t) = (limk→∞ Rk(0))z for a polynomial system x =
R(x) with non-negative coefficients, but with the additional feature that the
variable t appears as one of the coefficients. Since this limit can be described
by a power series in the variable t with non-negative coefficients, gz,τ (t) has the
following properties: it is a continuous, differentiable, and nondecreasing function
of t ∈ [0, 1], with continuous and nondecreasing derivative, g′z,τ (t), and since the
limit defines probabilities we also know that for t ∈ [0, 1], gz,τ (t) ∈ [0, 1]. Thus
gz,τ (0) ≥ 0 and gz,τ (1) ≤ 1.

Hence, since g′z,τ (t) is non-decreasing, if for some t ∈ [0, 1], gz,τ (t) > t, then
for all t′ < t, gz,τ (t′) > t′. To see this, note that if gz,τ (t) > t and g′z,τ (t) ≥ 1,
then for all t′′ > t, gz,τ (t′′) > t′′, which contradicts the fact that gz,τ (1) = 1.
Thus g′z,τ (t′) < 1 for all t′ ≤ t, and since gz,τ (t) > t, we also have gz,τ (t′) > t′ for
all t′ < t. Similarly, if gz,τ (t) < t for some t, then gz,τ (t′′) < t′′ for all t′′ ∈ [t, 1).
To see this, note that if for some t′′ > t, t′′ < 1, gz,τ (t′′) = t′′, then since g′z,τ is
non-decreasing and gz,τ (t) < t, it must be the case that g′z,τ (t′′) > 1. But then
gz,τ (1) > 1, which is a contradiction.

It follows that fz(t) has the same properties, namely: if fz(t) > t at some
point t ∈ [0, 1] then gz,τ (t) > t for all τ , and hence for all t′ < t and for all
τ ∈ dΨ2, gz,τ (t′) > t′, and thus fz(t′) > t′ for all t′ ∈ [0, t]. On the other hand, if
fz(t) < t at t ∈ [0, 1], then there must be some τ ′ ∈ dΨ2 such that gz,τ ′(t) < t.
Hence gz,τ ′(t′′) < t′′, for all t′′ ∈ [t, 1), and hence fz(t′′) < t′′ for all t′′ ∈ [t, 1).

Next we prove the lemma for every ϕ = hγ , where γ ∈ Γu
2 . For every value

of t, there is one SM strategy τt of player 2 (depending only on t) that min-
imizes simultaneously gz,τ (t) for all nodes z. So hγ(t) = minτ rγ,τ (t), where
rγ,τ (t) =

∑
γ1∈Γ1

p∗,u,σ(γ1)gw(γ1,γ),τ (t) is a convex combination (i.e., a “weighted
average”)of some g functions at the same point t. The function rγ,τ (for any
subscript ) inherits the same properties as the g’s: continuous, differentiable,
nondecreasing, with continuous nondecreasing derivatives, and rγ,τ takes value
between 0 and 1. As we argued for the g functions, in the same way it follows
that rγ,τ has properties 1 and 2. Also, as we argued for f ’s based on the g’s, it
follows that h’s also have the same properties, based on the r’s. ut

Let t1 = q∗,σu , and let t2 = Val(Au(q∗,σ)). By assumption t2 > t1. Observe
that fz(t1) = q∗,σz for every vertex z. Thus, hγ2(t1) =

∑
γ1∈Γ1

p∗,u,σ(γ1)fw(γ1,γ2)(t1) =∑
γ1

p∗,u,σ(γ1)q
∗,σ
w(γ1,γ2)

. But since, by definition, p∗,u,σ is an optimal strategy for
player 1 in the matrix game Au(q∗,σ), it must be the case that for every γ2 ∈ Γu

2 ,
hγ2(t1) ≥ t2, for otherwise player 2 could play a strategy against p∗,u,σ which
would force a payoff lower than the value of the game. Thus hγ2(t1) ≥ t2 > t1,
for all γ2. This implies that hγ2(t) > t for all t < t1 by Lemma 2, and for all
t1 ≤ t < t2, because hγ2 is nondecreasing. Thus, hγ2(t) > t for all t < t2.

Let t3 = q∗,σ
′

u . Let τ ′ be an optimal global strategy for player 2 against σ′;
by [14], we may assume τ ′ is a pure SM strategy. Let γ′ be player 2’s action in
τ ′ at node u. Then the value of any node z under the pair of strategies σ′ and
τ ′ is fz(t3), and thus since hγ′(t3) is a weighted average of fz(t3)’s for some set
of z’s, we have hγ′(t3) = t3. Thus, by the previous paragraph, it must be that



t3 ≥ t2, and we know t2 > t1. Thus, t3 = q∗,σ
′

u ≥ Val(Au(q∗,σ)) > t1 = q∗,σu . We
have shown:

Lemma 3. q∗,σ
′

u ≥ Val(Au(q∗,σ)) > q∗,σu .

Note that since t3 > t1, and fz is non-decreasing, we have fz(t3) ≥ fz(t1) for
all vertices z. But then q∗,σ

′

z = fz(t3) ≥ fz(t1) = q∗,σz for all z. Thus, q∗,σ
′ ≥ q∗,σ,

with strict inequality at u, i.e., q∗,σ
′

u > q∗,σu . Thus, we have established that such
a “strategy improvement” step does yield a strictly better payoff for player 1.

Suppose we conduct this “strategy improvement” step repeatedly, starting
at an arbitrary initial r-SM strategy σ0, as long as we can. This leads to a
(possibly infinite) sequence of r-SM strategies σ0, σ1, σ2, . . .. Suppose moreover,
that during these improvement steps we always “prioritize” among vertices at
which to improve so that, among all those vertices u ∈ Typeplay which can be
improved, i.e., such that q∗,σi

u < Val(Au(q∗,σi)), we choose the vertex which has
not been improved for the longest number of steps (or one that has never been
improved yet). This insures that, infinitely often, at every vertex at which the
local strategy can be improved, it eventually is improved.

Under this strategy improvement regime, we show that limi→∞ q∗,σi = q∗,
and thus, for all ε > 0, there exists a sufficiently large i ≥ 0 such that σi

is an ε-optimal r-SM strategy for player 1. Note that after every strategy im-
provement step, i, which improves at a vertex u, by Lemma 3 we will have
q
∗,σi+1
u ≥ Val(Au(q∗,σi)). Since our prioritization assures that every vertex that

can be improved at any step i will be improved eventually, for all i ≥ 0 there
exists k ≥ 0 such that q∗,σi ≤ P (q∗,σi) ≤ q∗,σi+k . In fact, there is a uniform
bound on k, namely k ≤ |Q|, the number of vertices. This “sandwiching” prop-
erty allows us to conclude that, in the limit, this sequence reaches a fixed point
of x = P (x). Note that since q∗,σi ≤ q∗,σi+1 for all i, and since q∗,σi ≤ q∗, we
know that the limit limi→∞ q∗,σi exists. Letting this limit be q′, we have q′ ≤ q∗.
Finally, we have q′ = P (q′), because letting i go to infinity in all three parts
of the “sandwiching” inequalities above, we get q′ ≤ limi→∞ P (q∗,σi) ≤ q′. But
note that limi→∞ P (q∗,σi) = P (q′), because the mapping P (x) is continuous on
Rn
≥0. Thus q′ is a fixed point of x = P (x), and q′ ≤ q∗. But since q∗ is the least

fixed point of x = P (x), we have q′ = q∗. ut

Finally, we give the following two reductions (proofs omitted due to space).
Recall that the square-root sum problem (see, e.g., [17, 12]) is the following: given
(d1, . . . , dn) ∈ Nn and k ∈ N, decide whether

∑n
i=1

√
di ≥ k.

Theorem 4. There is a P-time reduction from the square-root sum problem to
the quantitative termination (decision) problem for finite CSGs.

Theorem 5. There is a P-time reduction from the quantitative termination
(decision) problem for finite CSGs to the qualitative termination problem for
1-RCSGs.
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