Abstract
We define and construct Independent Zero-Knowledge Sets (ZKS) protocols. In a ZKS protocols, a Prover commits to a set S, and for any x, proves non-interactively to a Verifier if x ∈S or x ∉S without revealing any other information about S. In the independent ZKS protocols we introduce, the adversary is prevented from successfully correlate her set to the one of a honest prover. Our notion of independence in particular implies that the resulting ZKS protocol is non-malleable.
On the way to this result we define the notion of independence for commitment schemes. It is shown that this notion implies non-malleability, and we argue that this new notion has the potential to simplify the design and security proof of non-malleable commitment schemes.
Efficient implementations of ZKS protocols are based on the notion of mercurial commitments. Our efficient constructions of independent ZKS protocols requires the design of new commitment schemes that are simultaneously independent (and thus non-malleable) and mercurial.
Extended Abstract. An extended version, which contains all formal definitions and proofs, is available at the IACR Eprint Archive: http://eprint.iacr.org/ 2006/155
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyar, J., Kurtz, S.A., Krentel, M.W.: A Discrete Logarithm Implementation of Perfect Zero-Knowledge Blobs. J. Cryptology 2(2), 63–76 (1990)
Pfitzmann, B., Barić, N.: Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)
Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, Springer, Heidelberg (2001)
Catalano, D., Dodis, Y., Visconti, I.: Mercurial Commitments: Minimal Assumptions and Efficient Constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006)
Cramer, R.J.F., Damgård, I.B.: New Generation of Secure and Practical RSA-Based Signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)
Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC 2003, pp. 426–437 (2003)
Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-Interactive and Non-Malleable Commitment. In: STOC, pp. 141–150 (1998)
Di Crescenzo, G., Ostrovsky, R., Katz, J., Smith, A.: Efficient and Non-interactive Non-malleable Commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, Springer, Heidelberg (2001)
Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. SIAM J. Comp. 30(2), 391–437 (2000)
Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic Functions. In: FOCS (1999)
Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proofs of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)
Malkin, T.G., Reyzin, L., Lysyanskaya, A., Chase, M., Healy, A.: Mercurial Commitments with Applications to Zero-Knowledge Sets. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)
MacKenzie, P.D., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)
Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)
Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: FOCS 2003, pp. 80–91 (2003)
Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Rackoff, C., Ostrovsky, R., Smith, A.: Efficient Consistency Proofs for Generalized Queries on a Committed Database. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)
Rivest, R., Shamir, A., Adelman, L.: A Method for Obtaining Digital Signature and Public Key Cryptosystems. Comm. of ACM 21, 120–126 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gennaro, R., Micali, S. (2006). Independent Zero-Knowledge Sets. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_4
Download citation
DOI: https://doi.org/10.1007/11787006_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35907-4
Online ISBN: 978-3-540-35908-1
eBook Packages: Computer ScienceComputer Science (R0)