Skip to main content

Lower Bounds for Complementation of ω-Automata Via the Full Automata Technique

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4052))

Included in the following conference series:

Abstract

In this paper, we first introduce a new lower bound technique for the state complexity of transformations of automata. Namely we suggest considering the class of full automata in lower bound analysis. Then we apply such technique to the complementation of nondeterministic ω-automata and obtain several lower bound results. Particularly, we prove an Ω((0.76n)n) lower bound for Büchi complementation, which also holds for almost every complementation and determinization transformation of nondeterministic ω-automata, and prove an optimal (Ω(nk))n lower bound for the complementation of generalized Büchi automata, which holds for Streett automata as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birget, J.C.: Partial orders on words, minimal elements of regular languages and state complexity (has online erratum). Theor. Comput. Sci 119(2), 267–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of the International Congress on Logic, Method, and Philosophy of Science, Stanford University Press, pp. 1–12 (1962)

    Google Scholar 

  3. Vardi, M.Y., Kupferman, O., Friedgut, E.: Büchi Complementation Made Tighter. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg (2004) refer to: http://www.cs.rice.edu/~vardi/papers/index.html

    Chapter  Google Scholar 

  4. Kutrib, M., Holzer, M.: State Complexity of Basic Operations on Nondeterministic Finite Automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Jirásková, G.: State complexity of some operations on binary regular languages. Theor. Comput. Sci 330(2), 287–298 (2005)

    Article  MATH  Google Scholar 

  6. Klarlund, N.: Progress measures for complementation of omega-automata with applications to temporal logic. In: 32th FOCS, pp. 358–367 (1991)

    Google Scholar 

  7. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

    Google Scholar 

  8. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic automata on infinite words. In: TACAS, pp. 206–221 (2005)

    Google Scholar 

  10. Kupferman, O., Vardi, M.Y.: From complementation to certification. Theor. Comput. Sci 345(1), 83–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Löding, C.: Optimal Bounds for Transformations of ω-Automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)

    Google Scholar 

  13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  14. Safra, S.: On the complexity of ω-automata. In: 29th FOCS, pp. 319–327 (1988)

    Google Scholar 

  15. Safra, S.: Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of Science (1989)

    Google Scholar 

  16. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: 10th STOC, pp. 275–286 (1978)

    Google Scholar 

  17. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic (extended abstract). In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 465–474. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  18. Thomas, W.: Languages, automata and logic. In: Handbook of Formal Languages, vol. 3, pp. 389–455. Springer-Verlag, Berlin (1997)

    Google Scholar 

  19. Vardi, M.Y.: Büchi complementation: A 40-year saga. In: The 9th Asian Logic Conference (2005)

    Google Scholar 

  20. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu, S.: State complexity: Recent results and open problems, Invited talk at ICALP 2004 Workshop in Formal Languages (slides online) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, Q. (2006). Lower Bounds for Complementation of ω-Automata Via the Full Automata Technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_50

Download citation

  • DOI: https://doi.org/10.1007/11787006_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35907-4

  • Online ISBN: 978-3-540-35908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics