Abstract
Formal concept analysis has been proved to be useful to support knowledge discovery from boolean matrices. In many applications, such 0/1 data have to be computed from experimental data and it is common to miss some one values. Therefore, we extend formal concepts towards fault-tolerance. We define the DR-bi-set pattern domain by allowing some zero values to be inside the pattern. Crucial properties of formal concepts are preserved (number of zero values bounded on objects and attributes, maximality and availability of functions which “connect” the set components). DR-bi-sets are defined by constraints which are actively used by our correct and complete algorithm. Experimentation on both synthetic and real data validates the added-value of the DR-bi-sets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besson, J., Robardet, C., Boulicaut, J.-F.: Mining formal concepts with a bounded number of exceptions from transactional data. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 33–45. Springer, Heidelberg (2005)
Besson, J., Robardet, C., Boulicaut, J.-F., Rome, S.: Constraint-based bi-set mining for biologically relevant pattern discovery in microarray data. IDA journal 9(1), 59–82 (2005)
Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
Bucila, C., Gehrke, J.E., Kifer, D., White, W.: Dualminer: A dual-pruning algorithm for itemsets with constraints. In: ACM SIGKDD, pp. 42–51 (2002)
François, P., Robert, C., Cremilleux, B., Bucharles, C., Demongeot, J.: Variables processing in expert system building: application to the aetiological diagnosis of infantile meningitis. Med. Inf. 15(2), 115–124 (1990)
Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations and Applications. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)
Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0-1 data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)
Guenoche, A., Mechelen, I.V.: Galois approach to the induction of concepts. Categories and concepts: Theorical views and inductive data analysis, 287–308 (1993)
Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery and data analysis. In: ICCS 2000, pp. 421–437 (2000)
Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. JETAI 14 (2-3), 189–216 (2002)
Nguifo, E.M., Duquenne, V., Liquiere, M.: Concept lattice-based knowledge discovery in databases. JETAI 14(2-3), 75–79 (2002)
Pei, J., Tung, A.K.H., Han, J.: Fault-tolerant frequent pattern mining: Problems and challenges. In: DMKD, Workshop (2001)
Pensa, R.G., Boulicaut, J.-F.: Towards fault-tolerant formal concept analysis. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 212–223. Springer, Heidelberg (2005)
Seppänen, J.K., Mannila, H.: Dense itemsets. In: ACM SIGKDD 2004, pp. 683–688 (2004)
Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. DKE 42, 189–222 (2002)
Ventos, V., Soldano, H., Lamadon, T.: Alpha galois lattices. In: ICDM IEEE, pp. 555–558 (2004)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel (1982)
Yang, C., Fayyad, U., Bradley, P.S.: Efficient discovery of error-tolerant frequent itemsets in high dimensions. In: ACM SIGKDD, pp. 194–203. ACM Press, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Besson, J., Robardet, C., Boulicaut, JF. (2006). Mining a New Fault-Tolerant Pattern Type as an Alternative to Formal Concept Discovery. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds) Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science(), vol 4068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787181_11
Download citation
DOI: https://doi.org/10.1007/11787181_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35893-0
Online ISBN: 978-3-540-35902-9
eBook Packages: Computer ScienceComputer Science (R0)