Abstract
We present a method for mining frequently occurring objects and scenes from videos. Object candidates are detected by finding recurring spatial arrangements of affine covariant regions. Our mining method is based on the class of frequent itemset mining algorithms, which have proven their efficiency in other domains, but have not been applied to video mining before. In this work we show how to express vector-quantized features and their spatial relations as itemsets. Furthermore, a fast motion segmentation method is introduced as an attention filter for the mining algorithm. Results are shown on real world data consisting of music video clips.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD, pp. 26–28 (1993)
Mobasher, B., et al.: Effective personalization based on association rule discovery from web usage data. Web Information and Data Management 9–15 (2001)
Tešić, J., Newsam, S., Manjunath, B.S.: Mining Image Datasets using Perceptual Association Rules. In: Proc. SIAM Sixth Workshop on Mining Scientific and Engineering Datasets in conjunction with SDM (2003)
Antonie, M., Zaïane, O., Coman, A.: Associative Classifiers for Medical Images. In: Zaïane, O.R., Simoff, S.J., Djeraba, C. (eds.) MDM/KDD 2002 and KDMCD 2002. LNCS, vol. 2797, pp. 68–83. Springer, Heidelberg (2003)
Sivic, J., Zisserman, A.: Video Data Mining Using Configurations of Viewpoint Invariant Regions. IEEE CVPR 1, 488–495 (2004)
Osian, M., Van Gool, L.: Video shot characterization. Mach. Vision Appl. 15(3), 172–177 (2004)
Mikolajczyk, K., Schmid, C.: Scale and Affine invariant interest point detectors. IJCV 1(60), 63–86 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)
Lowe, D.: Distinctive image features from scale invariant keypoints. IJCV 2(60), 91–110 (2004)
Leibe, B., Schiele, B.: Interleaved Object Categorization and Segmentation. In: Proc. British Machine Vision Conference (BMVC 2003) (2003)
Borgelt, C.: APriori, http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
Webb, A.: Statistical Pattern Recognition. Wiley, Chichester (2003)
Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Chichester (1990)
Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. ICCV (2003)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)
Tan, P., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proc. ACM SIGKD (2002)
Minogue, K., Gondry, M.: Come Into My World. EMI (2002)
Minogue, K., Shadforth, D.: Can’t Get You Out Of My Head. EMI (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Quack, T., Ferrari, V., Van Gool, L. (2006). Video Mining with Frequent Itemset Configurations. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds) Image and Video Retrieval. CIVR 2006. Lecture Notes in Computer Science, vol 4071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788034_37
Download citation
DOI: https://doi.org/10.1007/11788034_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36018-6
Online ISBN: 978-3-540-36019-3
eBook Packages: Computer ScienceComputer Science (R0)