Skip to main content

A Linear-Algebraic Technique with an Application in Semantic Image Retrieval

  • Conference paper
Image and Video Retrieval (CIVR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4071))

Included in the following conference series:

  • 805 Accesses

Abstract

This paper presents a novel technique for learning the underlying structure that links visual observations with semantics. The technique, inspired by a text-retrieval technique known as cross-language latent semantic indexing uses linear algebra to learn the semantic structure linking image features and keywords from a training set of annotated images. This structure can then be applied to unannotated images, thus providing the ability to search the unannotated images based on keyword. This factorisation approach is shown to perform well, even when using only simple global image features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hare, J.S., Lewis, P.H., Enser, P.G.B., Sandom, C.J.: Mind the gap. In: Chang, E.Y., Hanjalic, A., Sebe, N. (eds.) Multimedia Content Analysis, Management, and Retrieval 2006, San Jose, California, USA, vol. 6073, pp. 607309–1–607309–12. SPIE (2006)

    Google Scholar 

  2. Enser, P.G.B., Sandom, C.J., Lewis, P.H.: Surveying the reality of semantic image retrieval. In: Bres, S., Laurini, R. (eds.) VISUAL 2005. LNCS, vol. 3736, pp. 177–188. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  4. Landauer, T.K., Littman, M.L.: Fully automatic cross-language document retrieval using latent semantic indexing. In: Proceedings of the Sixth Annual Conference of the UW Centre for the New Oxford English Dictionary and Text Research, Waterloo, Ontario, Canada, pp. 31–38 (1990)

    Google Scholar 

  5. Monay, F., Gatica-Perez, D.: On image auto-annotation with latent space models. In: MULTIMEDIA 2003: Proceedings of the eleventh ACM international conference on Multimedia, pp. 275–278. ACM Press, New York (2003)

    Chapter  Google Scholar 

  6. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9, 137–154 (1992)

    Article  Google Scholar 

  7. University of Washington: Ground truth image database (2004), http://www.cs.washington.edu/research/imagedatabase/groundtruth/

  8. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hare, J.S., Lewis, P.H.: Saliency-based models of image content and their application to auto-annotation by semantic propagation. In: Proceedings of the Second European Semantic Web Conference (ESWC 2005), Heraklion, Crete (2005)

    Google Scholar 

  10. Hare, J.S., Lewis, P.H.: On image retrieval using salient regions with vector-spaces and latent semantics. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 540–549. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Yavlinsky, A., Schofield, E., Rüger, S.: Automated Image Annotation Using Global Features and Robust Nonparametric Density Estimation. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 507–517. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hare, J.S., Lewis, P.H., Enser, P.G.B., Sandom, C.J. (2006). A Linear-Algebraic Technique with an Application in Semantic Image Retrieval. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds) Image and Video Retrieval. CIVR 2006. Lecture Notes in Computer Science, vol 4071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788034_4

Download citation

  • DOI: https://doi.org/10.1007/11788034_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36018-6

  • Online ISBN: 978-3-540-36019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics