Skip to main content

Natural Scene Image Modeling Using Color and Texture Visterms

  • Conference paper
Image and Video Retrieval (CIVR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4071))

Included in the following conference series:

Abstract

This paper presents a novel approach for visual scene representation, combining the use of quantized color and texture local invariant features (referred to here as visterms) computed over interest point regions. In particular we investigate the different ways to fuse together local information from texture and color in order to provide a better visterm representation. We develop and test our methods on the task of image classification using a 6-class natural scene database. We perform classification based on the bag-of-visterms (BOV) representation (histogram of quantized local descriptors), extracted from both texture and color features. We investigate two different fusion approaches at the feature level: fusing local descriptors together and creating one representation of joint texture-color visterms, or concatenating the histogram representation of both color and texture, obtained independently from each local feature. On our classification task we show that the appropriate use of color improves the results w.r.t. a texture only representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mikolajczyk, K., Schmid, C.: Scale and affine interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  3. Willamowski, J., Arregui, D., Csurka, G., Dance, C., Fan, L.: Categorizing nine visual classes using local appearance descriptors. In: Proc. of LAVS Workshop, in ICPR 2004, Cambridge (2004)

    Google Scholar 

  4. Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Gool, L.V.: Modeling scenes with local descriptors and latent aspects. In: Proc. of IEEE Int. Conf. on Computer Vision, Beijing (2005)

    Google Scholar 

  5. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proc. of IEEE Int. Conf. on Computer Vision And Pattern Recognition, San Diego (2005)

    Google Scholar 

  6. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. of IEEE Int. Conf. on Computer Vision, Nice (2003)

    Google Scholar 

  7. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. of IEEE Int. Conf. on Computer Vision, Beijing (2005)

    Google Scholar 

  8. Dorko, G., Schmid, C.: Selection of scale invariant parts for object class recognition. In: Proc. of IEEE Int. Conference on Computer Vision, Nice (2003)

    Google Scholar 

  9. Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.: Image classification for content-based indexing. IEEE Trans. on Image Processing 10, 117–130 (2001)

    Article  MATH  Google Scholar 

  10. Szummer, M., Picard, R.: Indoor-outdoor image classification. In: IEEE International Workshop CAIVD, in ICCV 1998, Bombay (1998)

    Google Scholar 

  11. Oliva, A., Torralba, A., Guerin-Dugue, A., Herault, J.: Global semantic classification of scenes using power spectrum templates. In: Proc. of the Challenge of Image Retrieval, Newcastle upon Tyne, UK (1999)

    Google Scholar 

  12. Paek, S., Chang, S.-F.: A knowledge engineering approach for image classification based on probabilistic reasoning systems. In: Proc. of IEEE Int. Conference on Multimedia and Expo., New York (2000)

    Google Scholar 

  13. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)

    Article  Google Scholar 

  14. Serrano, N., Savakis, A., Luo, J.: A computationally efficent approach to indoor/outdoor scene classification. In: Int. Conf. on Pattern Recognition (2002)

    Google Scholar 

  15. Vogel, J., Schiele, B.: A semantic typicality measure for natural scene categorization. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 195–203. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Boutell, M., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37, 1757–1771 (2004)

    Article  Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proc. of IEEE Int. Conf. on Comp. Vision and Pattern Recognition (2003)

    Google Scholar 

  18. Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. of the British Machine Vision Conference, Cardiff (2002)

    Google Scholar 

  19. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE PAMI 20, 226–239 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quelhas, P., Odobez, JM. (2006). Natural Scene Image Modeling Using Color and Texture Visterms. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds) Image and Video Retrieval. CIVR 2006. Lecture Notes in Computer Science, vol 4071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788034_42

Download citation

  • DOI: https://doi.org/10.1007/11788034_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36018-6

  • Online ISBN: 978-3-540-36019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics