Skip to main content

Object Tracking and Elimination Using Level-of-Detail Canny Edge Maps

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4069))

Included in the following conference series:

  • 865 Accesses

Abstract

We propose a method for tracking a nonparameterized subject contour in a single video stream with a moving camera. Then we eliminate the tracked contour object by replacing the background scene we get from other frame that is not occluded by the tracked object. Our method consists of two parts: first we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame. In order to track a contour object, LOD Canny edge maps are generated by changing scale parameters for a given image. A simple (strong) Canny edge map has the smallest number of edge pixels while the most detailed Canny edge map, WcannyN, has the largest number of edge pixels. To reduce side-effects because of irrelevant edges, we start our basic tracking by using simple (strong) Canny edges generated from large image intensity gradients of an input image, called Scanny edges. Starting from Scanny edges, we get more edge pixels ranging from simple Canny edge maps until the most detailed (weaker) Canny edge maps, called Wcanny maps along LOD hierarchy. LOD Canny edge pixels become nodes in routing, and LOD values of adjacent edge pixels determine routing costs between the nodes. We find the best route to follow Canny edge pixels favoring stronger Canny edge pixels. In order to remove the tracked object, we generate approximated background for the first frame. Background images for subsequent frames are based on the first frame background or previous frame images. This approach is based on computing camera motion, camera movement between two image frames. Our method works nice for moderate camera movement with small object shape changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, J.: Contour tracking using modified canny edge maps with level-of-detail. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 1–8. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  3. Peterfreund, N.: Robust tracking of position and velocity with kalman snakes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 564–569 (1999)

    Article  Google Scholar 

  4. Fu, Y., Erdem, A.T., Tekalp, A.M.: Tracking visible boundary of objects using occlusion adaptive motion snake. IEEE Trans. on Image Processing 9, 2051–2060 (2000)

    Article  Google Scholar 

  5. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 266–280 (2000)

    Article  Google Scholar 

  6. Nguyen, H.T., Worring, M., van den Boomgaard, R., Smeulders, A.W.M.: Tracking nonparameterized object contours in video. IEEE Trans. on Image Processing 11, 1081–1091 (2002)

    Article  Google Scholar 

  7. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definition, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Nguyen, H.T., Worring, M., van den Boomgaard, R.: Watersnakes: energy-driven watershed segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 330–342 (2003)

    Article  Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, J. (2006). Object Tracking and Elimination Using Level-of-Detail Canny Edge Maps. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2006. Lecture Notes in Computer Science, vol 4069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11789239_29

Download citation

  • DOI: https://doi.org/10.1007/11789239_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36031-5

  • Online ISBN: 978-3-540-36032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics