Abstract
In our research we used a microRNA expression level data set describing eleven types of human cancers. Our methodology was based on data mining (rule induction) using rough set theory. We used a novel methodology based on rule generations and cumulative rule sets. The original testing data set described only four types of cancer. We further restricted our attention to two types of cancer: breast and ovary. Using our combined rule set, all but one cases of breast cancer and all cases of ovary cancer were correctly classified.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambion: http://www.ambion.com/techlib/resources/miRNA/index.html
Berezikov, E., Plasterk, R.H.A.: Camels and zebrafish, viruses and cancer: a microRNA update. Hum. Mol. Genet 14, R183–R190 (2005)
Brown, D., Shingara, J., Keiger, K., Shelton, J., Lew, K., Cannon, B., Banks, S., Wowk, S., Byrom, M., Cheng, A., Wang, X., Labourier, E.: Cancer-Related miRNAs Uncovered by the mirVanaTM miRNA Microarray Platform. Ambion Technotes Newsletter 12, 8–11 (2005)
Calin, G.A., Sevignani, C., Dan Dumitru, C., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., Croce, C.M.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004 (2004)
Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E., Dahlberg, J.E.: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632 (2005)
Fang, J., Grzymala-Busse, J.W.: Leukemia prediction from gene expression data—A rough set approach. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, Springer, Heidelberg (2006)
Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)
Grzymala-Busse, J.W.: MLEM2: A new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002, Annecy, France, pp. 243–250 (2002)
Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X.: An approach to imbalanced data sets based on changing rule strength. In: Learning from Imblanced Data Sets, AAI Workshop at the 17th Conference on AI, AAAI-2000, Austin, TX, July 30–31, pp. 69–74 (2000)
He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., Hammond, S.M.: A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005)
Kasashima, K., Nakamura, Y., Kozu, T.: Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 17, 403–410 (2004)
Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebet, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)
McManus, M.T.: MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003)
miRNAmap: http://mirnamap.mbc.nctu.edu.tw/
MicroRNAdb: http://166.111.30.65/micrornadb/
Pillai, R.S.: MicroRNA function: Multiple mechanisms for a tiny RNA? RNA 11, 1753–1761 (2005)
Sanger Institute: http://microrna.sanger.ac.uk/
Sebolt-Leopold, J.S., Dudley, D.T., Herrera, R., Van Becelaere, K., Wiland, A., Gowan, R.C., Tecle, H., Barrett, S.D., Bridges, A., Przybranowski, S., Leopold, W.R., Saltiel, A.R.: Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med. 5, 810–816 (1999)
Simor, R.: Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n). SIGKDD Explorations 5, 31–36 (2003)
Yekta, S., Shih, I.H., Bartel, D.P.: MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, J., Grzymala-Busse, J.W. (2006). Mining of MicroRNA Expression Data—A Rough Set Approach. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_110
Download citation
DOI: https://doi.org/10.1007/11795131_110
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36297-5
Online ISBN: 978-3-540-36299-9
eBook Packages: Computer ScienceComputer Science (R0)