Skip to main content

Knowledge Reduction in Incomplete Information Systems Based on Dempster-Shafer Theory of Evidence

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4062))

Included in the following conference series:

  • 1102 Accesses

Abstract

Knowledge reduction is one of the main problems in the study of rough set theory. This paper deals with knowledge reduction in incomplete information systems based on Dempster-Shafer theory of evidence. The concepts of plausibility and belief consistent sets as well as plausibility and belief reducts in incomplete information systems are introduced. It is proved that a plausibility consistent set in an incomplete information system must be a consistent set and an attribute set in an incomplete information system is a belief reduct if and only if it is a classical reduct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)

    MATH  Google Scholar 

  2. Bazan, J.A.: Comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: 1. Methodology and Applications, pp. 321–365. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  3. Beynon, M.: Reducts within the variable precision rough sets model: a further investigation. European Journal of Operational Research 134, 592–605 (2001)

    Article  MATH  Google Scholar 

  4. Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction in insistent systems. International Journal of Intelligent Systems 16, 105–120 (2001)

    Article  MATH  Google Scholar 

  5. Li, D.Y., Zhang, B., Leung, Y.: On knowledge reduction in inconsistent decision information systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 651–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reductions based on variable precision rough sets model. Information Sciences 159, 255–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nguyen, H.S., Slezak, D.: Approximation reducts and association rules correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Slezak, D.: Searching for dynamic reducts in inconsistent decision tables. In: Proceedings of IPMU 1998, Paris, France, vol. 2, pp. 1362–1369 (1998)

    Google Scholar 

  9. Slezak, D.: Approximate reducts in decision tables. In: Proceedings of IPMU 1996, Granada, Spain, vol. 3, pp. 1159–1164 (1996)

    Google Scholar 

  10. Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174, 143–164 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, M., Xu, L.D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory. Expert Systems 20, 298–304 (2003)

    Article  Google Scholar 

  12. Zhang, W.-X., Mi, J.-S., Wu, W.-Z.: Approaches to knowledge reductions in inconsistent systems. International Journal of Intelligent Systems 21, 989–1000 (2003)

    Article  Google Scholar 

  13. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leung, Y., Li, D.Y.: Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences 153, 85–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leung, Y., Wu, W.-Z., Zhang, W.-X.: Knowledge acquisition in incomplete information systems: a rough set approach. European Journal of Operational Research 168, 164–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lingras, P.J., Yao, Y.Y.: Data mining using extensions of the rough set model. Journal of the American Society for Information Science 49, 415–422 (1998)

    Article  Google Scholar 

  18. Slowinski, R., Stefanowski, J.: Rough classification in incomplete information systems. Mathematical and Computer Modelling 12, 1347–1357 (1989)

    Article  Google Scholar 

  19. Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence: An International Journal 17, 545–566 (2001)

    Google Scholar 

  20. Wu, W.-Z., Zhang, W.-X., Li, H.-Z.: Knowledge acquisition in incomplete fuzzy information systems via rough set approach. Expert Systems 20, 280–286 (2003)

    Article  Google Scholar 

  21. Zhang, W.-X., Mi, J.-S.: Incomplete information system and its optimal selections. Computers and Mathematics with Applications 48, 691–698 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  23. Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 193–236. Wiley, New York (1994)

    Google Scholar 

  24. Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems 31, 405–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yao, Y.Y.: Interpretations of belief functions in the theory of rough sets. Information Sciences 104, 81–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: 1. Methodology and Applications, pp. 286–318. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, W., Mi, J. (2006). Knowledge Reduction in Incomplete Information Systems Based on Dempster-Shafer Theory of Evidence. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_37

Download citation

  • DOI: https://doi.org/10.1007/11795131_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36297-5

  • Online ISBN: 978-3-540-36299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics