Skip to main content

Data Dimension Reduction Using Rough Sets for Support Vector Classifier

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4062))

Included in the following conference series:

Abstract

This paper proposes an application of rough sets as a data preprocessing front end for support vector classifier (SVC). A novel multi-class support vector classification strategy based on binary tree is also presented. The binary tree extends the pairwise discrimination capability of the SVC to the multi-class case naturally. Experimental results on benchmark datasets show that proposed method can reduce computation complexity without decreasing classification accuracy compare to SVC without data preprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Swiniarski, R., Skowron, A.: Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters 24, 833–849 (2003)

    Article  MATH  Google Scholar 

  4. Roman, W.S., Larry, H.: Rough sets as a front end of neural-networks texture classifiers. Neurocomputing 36(85-102) (2001)

    Google Scholar 

  5. Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multiclass Support Vector Machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  6. Stallog collection at http://www.niaad.liacc.up.pt/old/stalog/datasets.html

  7. Libsvm at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  8. Rose at http://www.idss.cs.put.poznan.pl/site/rose.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, G., Ma, G., Zhu, L. (2006). Data Dimension Reduction Using Rough Sets for Support Vector Classifier. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_67

Download citation

  • DOI: https://doi.org/10.1007/11795131_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36297-5

  • Online ISBN: 978-3-540-36299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics