Abstract
Design and implementation of intrusion detection systems remain an important research issue in order to maintain proper network security. Support Vector Machines (SVM) as a classical pattern recognition tool have been widely used for intrusion detection. However, conventional SVM methods do not concern different characteristics of features in building an intrusion detection system. We propose an enhanced SVM model with a weighted kernel function based on features of the training data for intrusion detection. Rough set theory is adopted to perform a feature ranking and selection task of the new model. We evaluate the new model with the KDD dataset and the UNM dataset. It is suggested that the proposed model outperformed the conventional SVM in precision, computation time, and false negative rate.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bace, R.G.: Intrusion Detection. Macmillan Technical Publishing (2000)
Burge, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data mining and knowledge discovery journal 2, 121–167 (1998)
Dasarathy, B.V.: Intrusion detection. Information Fusion 4, 243–245 (2003)
Frakes, W.B., Baeza-Yates, R., Ricardo, B.Y.: Information Retrieval: Data Structures and Algorithms. Prentice-Hall, Englewood Cliffs (1992)
Han, J.C., Sanchez, R., Hu, X.H.: Feature Selection Based on Relative Attribute Dependency: An Experimental Study. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 214–223. Springer, Heidelberg (2005)
Hu, K., Lu, Y., Shi, C.: Feature Ranking in Rough Sets. AI Communications 16, 41–50 (2003)
Joachims, T.: Making large-Scale SVM Learning Practical, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proc. of the 11th Int. Conf. on Machine Learning, pp. 121–129 (1994)
Lee, W., Stolfo, S.J.: Data Mining Approaches for Intrusion Detection. In: The 7th USENIX Security Symposium, pp. 79–94 (1998)
Mohajerani, M., Moeini, A., Kianie, M.: NFIDS: A Neuro-fuzzy Intrusion Detection System. In: Proc. of the 10th IEEE Int. Conf. on Electronics, Circuits and Systems, pp. 348–351 (2003)
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough Set. Communications of the ACM 11, 89–95 (1995)
Qiao, Y., Xin, X.W., Bin, Y., Ge, S.: Anomaly Intrusion Detection Method Based on HMM. Electronics Letters 13, 663–664 (2002)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Wang, W.D., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules. In: Proc. of the 7th Int. Conf. on Fuzzy Theory & Technology, pp. 131–134 (2000)
Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions Using System Calls: Alternative Data Models. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 133–145 (1999)
Yao, J.T., Zhang, M.: Feature Selection with Adjustable Criteria. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 204–213. Springer, Heidelberg (2005)
Yao, J.T., Zhao, S.L., Saxton, L.V.: A study on Fuzzy Intrusion Detection. In: Proc. of Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security. SPIE, vol. 5812, pp. 23–30 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, J., Zhao, S., Fan, L. (2006). An Enhanced Support Vector Machine Model for Intrusion Detection. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_78
Download citation
DOI: https://doi.org/10.1007/11795131_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36297-5
Online ISBN: 978-3-540-36299-9
eBook Packages: Computer ScienceComputer Science (R0)