Skip to main content

An Enhanced Support Vector Machine Model for Intrusion Detection

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4062))

Included in the following conference series:

Abstract

Design and implementation of intrusion detection systems remain an important research issue in order to maintain proper network security. Support Vector Machines (SVM) as a classical pattern recognition tool have been widely used for intrusion detection. However, conventional SVM methods do not concern different characteristics of features in building an intrusion detection system. We propose an enhanced SVM model with a weighted kernel function based on features of the training data for intrusion detection. Rough set theory is adopted to perform a feature ranking and selection task of the new model. We evaluate the new model with the KDD dataset and the UNM dataset. It is suggested that the proposed model outperformed the conventional SVM in precision, computation time, and false negative rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bace, R.G.: Intrusion Detection. Macmillan Technical Publishing (2000)

    Google Scholar 

  2. Burge, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data mining and knowledge discovery journal 2, 121–167 (1998)

    Article  Google Scholar 

  3. Dasarathy, B.V.: Intrusion detection. Information Fusion 4, 243–245 (2003)

    Article  MathSciNet  Google Scholar 

  4. Frakes, W.B., Baeza-Yates, R., Ricardo, B.Y.: Information Retrieval: Data Structures and Algorithms. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  5. Han, J.C., Sanchez, R., Hu, X.H.: Feature Selection Based on Relative Attribute Dependency: An Experimental Study. In: ÅšlÄ™zak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 214–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Hu, K., Lu, Y., Shi, C.: Feature Ranking in Rough Sets. AI Communications 16, 41–50 (2003)

    Google Scholar 

  7. Joachims, T.: Making large-Scale SVM Learning Practical, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  8. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proc. of the 11th Int. Conf. on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  9. Lee, W., Stolfo, S.J.: Data Mining Approaches for Intrusion Detection. In: The 7th USENIX Security Symposium, pp. 79–94 (1998)

    Google Scholar 

  10. Mohajerani, M., Moeini, A., Kianie, M.: NFIDS: A Neuro-fuzzy Intrusion Detection System. In: Proc. of the 10th IEEE Int. Conf. on Electronics, Circuits and Systems, pp. 348–351 (2003)

    Google Scholar 

  11. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough Set. Communications of the ACM 11, 89–95 (1995)

    Google Scholar 

  12. Qiao, Y., Xin, X.W., Bin, Y., Ge, S.: Anomaly Intrusion Detection Method Based on HMM. Electronics Letters 13, 663–664 (2002)

    Article  Google Scholar 

  13. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  14. Wang, W.D., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules. In: Proc. of the 7th Int. Conf. on Fuzzy Theory & Technology, pp. 131–134 (2000)

    Google Scholar 

  15. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions Using System Calls: Alternative Data Models. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 133–145 (1999)

    Google Scholar 

  16. Yao, J.T., Zhang, M.: Feature Selection with Adjustable Criteria. In: ÅšlÄ™zak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 204–213. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Yao, J.T., Zhao, S.L., Saxton, L.V.: A study on Fuzzy Intrusion Detection. In: Proc. of Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security. SPIE, vol. 5812, pp. 23–30 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, J., Zhao, S., Fan, L. (2006). An Enhanced Support Vector Machine Model for Intrusion Detection. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_78

Download citation

  • DOI: https://doi.org/10.1007/11795131_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36297-5

  • Online ISBN: 978-3-540-36299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics