Skip to main content

Self-stabilizing Population Protocols

  • Conference paper
Principles of Distributed Systems (OPODIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3974))

Included in the following conference series:

Abstract

Self-stabilization in a model of anonymous, asynchronous interacting agents deployed in a network of unknown size is considered. Dijkstra-style round-robin token circulation can be done deterministically with constant space per node in this model. Constant-space protocols are given for leader election in rings, local-addressing in degree-bounded graphs, and establishing consistent global direction in an undirected ring. A protocol to construct a spanning tree in regular graphs using O(logD) memory is also given, where D is the diameter of the graph. A general method for eliminating nondeterministic transitions from the self-stabilizing implementation of a large family of behaviors is used to simplify the constructions, and general conditions under which protocol composition preserves behavior are used in proving their correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Twenty-Third ACM Symposium on Principles of Distributed Computing, pp. 290–299 (2004)

    Google Scholar 

  2. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  4. Mayer, A., Ofek, Y., Ostrovsky, R., Yung, M.: Self-stabilizing symmetry breaking in constant-space (extended abstract). In: Proc. 24th ACM Symp. on Theory of Computing, pp. 667–678 (1992)

    Google Scholar 

  5. Itkis, G., Lin, C., Simon, J.: Deterministic, constant space, self-stabilizing leader election on uniform rings. In: Workshop on Distributed Algorithms, pp. 288–302 (1995)

    Google Scholar 

  6. Higham, L., Myers, S.: Self-stabilizing token circulation on anonymous message passing rings. Technical report, University of Calgary (1999)

    Google Scholar 

  7. Johnen, C.: Bounded service time and memory space optimal self-stabilizing token circulation protocol on unidirectional rings. In: Procedings of the 18th International Parallel and Distributed Processing Symposium, p. 52a (2004)

    Google Scholar 

  8. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2), 63–67 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel and Distributed Systems 8, 424–440 (1997)

    Article  Google Scholar 

  10. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-stabilizing leader election protocols. In: Eighteenth ACM Symposium on Principles of Distributed Computing, pp. 199–207 (1999)

    Google Scholar 

  11. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In: Proceeding of 35th Annual Symposium on Foundations of Computer Science, pp. 226–239. IEEE Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  12. Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance two. Journal of Discrete Mathematics 5, 586–595 (1992)

    Article  MATH  Google Scholar 

  13. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Gradinariu, M., Johnen, C.: Self-stabilizing Neighborhood Unique Naming under Unfair Scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proceedings of the 17th annual ACM symposium on Parallelism in algorithms and architectures, pp. 39–48. ACM Press, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H. (2006). Self-stabilizing Population Protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds) Principles of Distributed Systems. OPODIS 2005. Lecture Notes in Computer Science, vol 3974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795490_10

Download citation

  • DOI: https://doi.org/10.1007/11795490_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36321-7

  • Online ISBN: 978-3-540-36322-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics