
Revising UNITY Programs: Possibilities and
Limitations1

Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
48824 East Lansing, Michigan, USA

{ebnenasi, sandeep, borzoo}@cse.msu.edu
http://www.cse.msu.edu/~{ebnenasi,sandeep,borzoo}

Abstract. We concentrate on automatic addition of UNITY properties
unless, stable, invariant, and leads-to to programs. We formally define the
problem of adding UNITY properties to programs while preserving their
existing properties. For cases where one simultaneously adds a single
leads-to property along with a conjunction of unless, stable, and invari-
ant properties to an existing program, we present a sound and complete
algorithm with polynomial time complexity (in program state space).
However, for cases where one simultaneously adds two leads-to proper-
ties to a program, we present a somewhat unexpected result that such
addition is NP-complete. Therefore, in general, adding one leads-to prop-
erty is significantly easier than adding two (or more) leads-to properties.

Keywords: UNITY, Formal Methods, Program Synthesis

1 Introduction

In this paper, we focus on automated addition of UNITY properties [1] to existing
programs. To motivate the application of this work, consider two scenarios: In the
first scenario, a designer checks the model of a computing system to determine
if it satisfies the given properties of interest using a model checker. The model
checker provides a counterexample demonstrating that one of the properties is
not met. In this scenario, the designer needs to modify the given model so that
it satisfies that property (while ensuring that the remaining properties continue
to be satisfied). In another scenario, an existing program needs to be modified
so that it satisfies an additional property of interest (while satisfying existing
properties). Such a scenario occurs when the specification is incomplete and as
designers gain more domain knowledge about the problem at hand, they may
add new properties to the specification.

1 This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a
grant from Michigan State University.

2 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

There exist two ways in which one can deal with the above scenarios: (1)
local redesign, where the designer removes the program behaviors that violate
the property of interest without adding any new behaviors, or (2) comprehensive
redesign, where the designer introduces new behaviors in the program compu-
tations (e.g., by introducing new variables, or adding new computation paths).
Clearly, the former approach is desirable, as it ensures that certain existing spec-
ifications (e.g., the UNITY specifications from [1]) are preserved. Moreover, in
the second scenario, the designer may not have access to the complete specifi-
cation of the existing system. Hence, in this case, local redesign, if successful, is
highly desirable.

We expect that an algorithm for local redesign would be especially useful
if it were sound and complete. A sound algorithm ensures that the redesigned
program meets the new specification (in addition to preserving existing spec-
ification); i.e., the redesigned program is correct by construction. Moreover, a
complete algorithm provides an insight for the designer to decide if a program
can be redesigned locally or it should be redesigned from scratch to satisfy a new
property while preserving its exiting properties. Such automated assistance for
the designer is highly desirable since it significantly decreases the design time
by warning the designers about spending time on fixing a program that is not
fixable.

With this motivation, we present an incremental method for adding UNITY
properties to programs. Our incremental approach has the potential to reuse the
computations of an existing program while adding new properties to it. Also,
we focus on UNITY since it provides (i) a simple and general computational
model for a variety of computing systems, and (ii) a proof system for refining
programs [1]. We expect to benefit from simplicity and generality of UNITY in
automatic design of programs.

The basic UNITY properties from [1] are unless, stable, invariant, ensures,
and leads-to. (We refer the reader to Section 2 for precise definitions.) Of these,
ensures can be expressed in terms of leads-to and unless. Hence, we focus on
adding unless, stable, invariant, and leads-to to programs. In particular, we
present a sound and complete algorithm for simultaneous addition of a single
leads-to property and a conjunction of unless, stable, and invariant properties.
The time complexity of our algorithm is polynomial in program state space.
However, we present an unexpected result that simultaneous addition of two
leads-to properties to a program is NP-complete. Based on this result, we find
that adding one leads-to property is significantly easier than simultaneous addi-
tion of two (or more) leads-to properties.

Contributions. The contributions of this paper are as follows: (1) We formally
define the problem of adding UNITY properties to programs; (2) We present a
sound and complete algorithm for automatic addition of a leads-to property and
a conjunction of unless, stable, and invariant properties to programs, and (3)
We show that simultaneous addition of two leads-to properties to a program is
NP-complete.

Revising UNITY Programs: Possibilities and Limitations 3

Organization of the paper. First, we present preliminary concepts in Section
2. In Section 3, we formally define the problem of adding UNITY properties to
programs. Then, in Section 4, we present our sound and complete algorithm
for adding a leads-to property to programs. In Section 5, we present our NP-
completeness result. Subsequently, in Section 6, we demonstrate our addition
algorithm using a mutual exclusion program. In Section 7, we compare the results
of this paper with related work. We discuss the limitations and the applications
of our results in Section 8. Finally, we make concluding remarks in Section 9.

2 Preliminaries
In this section, we give formal definitions of programs and properties in UNITY
[1]. Programs are defined in terms of their state space and their transitions.
UNITY properties are defined in terms of infinite sequences of transitions.
Program. A program p is of the form 〈Sp, Ip, δp〉, where Sp is a finite set of
states, Ip ⊆ Sp is the set of initial states of p, and δp ⊆ Sp × Sp is the set of
transitions of p.

A state predicate of p is any subset of Sp. A sequence of states, σ = 〈s0, s1, · · ·〉
is a computation of p iff (if and only if) the following three conditions are satisfied:
(1) s0 ∈ Ip; (2) if σ is infinite then ∀j : j > 0 : (sj−1, sj)∈ δp holds, and (3) if
σ is finite and terminates in state sf then there does not exist state s such that
(sf , s) ∈ δp, and ∀j : 0 < j ≤ f : (sj−1, sj) ∈ δp holds. A sequence of states,
〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n : (sj−1, sj)∈δp .
Properties of UNITY Programs. We reiterate the definition of the UNITY
properties from [1]. In the following definitions, P and Q are state predicates.

– Unless. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies P unless Q
iff ∀i : 0 ≤ i : (si ∈ (P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪ Q)). Intuitively, the sequence
σ satisfies P unless Q iff if P holds in some state of σ then either (1) Q
never holds in σ and P is continuously true, or (2) Q eventually becomes
true and P holds at least until Q becomes true.

– Stable. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies stable(P) iff σ
satisfies (P unless false). Intuitively, P is stable iff once it becomes true it
remains true forever.

– Invariant. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies invariant(P)
iff s0 ∈ P and σ satisfies stable(P). An invariant property always holds.

– Ensure. An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies P ensures Q
iff (σ satisfies P unless Q) and (∃j : 0 ≤ j : sj ∈ Q). In other words, there
exists a state sj , where (i) Q eventually becomes true in sj , and (ii) P
remains true everywhere between the first state si, i ≤ j, where P becomes
true and sj .

– Leads-to (denoted 7→). An infinite sequence of states σ = 〈s0, s1, ...〉 satisfies
P 7→ Q iff (∀i : 0 ≤ i : (si ∈ P) ⇒ (∃j : i ≤ j : sj ∈ Q)). If P holds in some
state si ∈ σ then there exists a state sj ∈ σ where Q holds and i ≤ j.

Since ensures can be expressed as a conjunction of an unless property and a
leads-to property, we do not consider it explicitly in this paper. The properties

4 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

unless, stable, and invariant are safety properties, as defined by Alpern and
Schneider [2]. These properties can be modeled in terms of a set of bad transitions
that should never occur in a program computation. For example, stable(P),
requires that transitions of the form (s0, s1), where s0 ∈ P and s1 /∈ P should
never occur in any program computation. Hence, for simplicity, in this paper,
when dealing with these properties, we assume that they are represented as a
set of transitions B ⊆ Sp × Sp that must not occur in any computation.

Now, let spec be any conjunction of the above properties; i.e., spec = L1 ∧
· · · ∧ Ln, where Li belongs to the set of properties unless, stable, invariant,
and leads-to (1 ≤ i ≤ n). A sequence of states σ = 〈s0, s1, ...〉 satisfies spec iff
∀i : 1 ≤ i ≤ n : σ satisfies Li. We say that program p satisfies a given UNITY
specification, spec, iff all computations of p are infinite and every computation
of p satisfies spec.
Remark. We distinguish between a terminating computation and a deadlocked
computation. To model a computation that terminates in state sf , we include the
transition (sf , sf) in program p. When a computation c of p reaches sf , c can be
extended to an infinite computation by stuttering at sf . If there exists a state sd

such that there is no outgoing program transition from sd then sd is a deadlocked
state and a computation of p that reaches sd is a deadlocked computation. Such
computations cannot be extended to an infinite computation. We want to ensure
that such deadlocked computations do not occur while revising a program.

3 Problem Statement

In this section, we formally define the problem of adding UNITY specifications
to programs. Given is a program p (with state space Sp, initial states Ip and
transitions δp) that satisfies a UNITY specification spece. The goal is to generate
a modified version of p, denoted p′, in such a way that p′ satisfies a UNITY
specification specn, in addition to preserving its existing specification spece.
Moreover, this addition should be done in such a way that one does not need
to know the existing specification spece; during the addition, we only want to
reuse the correctness of p with respect to spece so that the correctness of p′ with
respect to spece is derived from ‘p satisfies spece’.

Now, we identify constraints on Sp′ , Ip′ and δp′ . Clearly, in obtaining Sp′ ,
no new states should be added to Sp; otherwise, there is no guarantee that the
correctness of p can be reused to ensure that existing specification will continue to
be preserved. Moreover, since Sp denotes the set of all states (not just reachable
states) of p, removing states from Sp is not advantageous. Likewise, Ip′ should
not have any states that were not there in Ip. Moreover, since Ip denotes the
set of all initial states of p, we should preserve them during the transformation.
Finally, likewise, δp′ should be a subset of δp. Note that not all transitions of
δp may be preserved in p′. However, we must ensure that p′ does not deadlock
in any reachable state. Based on the definition of the UNITY specification, if
(i) δp′ ⊆ δp, (ii) p′ does not deadlock in any reachable state, and (iii) p satisfies
spece, then p′ also satisfies spece. Thus, the problem statement is defined as
follows:

Revising UNITY Programs: Possibilities and Limitations 5

The Problem of Adding UNITY Properties
Given a program p, its state space Sp, its set of initial states Ip, and
a UNITY specification specn , identify
δp′ , Sp′ , and Ip′ such that

(C1) Sp′ = Sp

(C2) Ip′ = Ip

(C3) δp′ ⊆ δp

(C4) p′ satisfies specn ut
Note that the requirement of deadlock freedom is not explicitly specified in

the above problem statement, as it follows from ‘p′ satisfies specn’.

4 Adding Single Leads-to and Multiple Safety Properties
In this section, we present a simple solution for the addition problem (defined
in Section 3) for the case where the new specification specn is a conjunction of
a single leads-to property and multiple safety properties. We note that the goal
of our algorithm is simply to illustrate the feasibility of this solution. Hence,
although our algorithm in this section can be modified to reduce complexity
further, we have chosen to present a simple (and not so efficient) solution. In
Section 8, we give an intuition as to how one can implement our algorithm using
counterexamples provided by model checkers.

Given are a program p = 〈Sp, Ip, δp〉 and a specification specn = B∧L, where
B represents the conjunction of a set of safety properties and L is a R 7→ T
property for state predicates R and T . Our goal is to generate a new program p′

that satisfies specn and preserves the existing specification. To guarantee that p′

satisfies B (i.e., p′ never executes a transition in the set of bad transitions B), we
exclude all transitions of p that belong to B (see Step 1 in Figure 1). To add the
leads-to property L ≡ (R 7→ T) to p, we need to guarantee that any computation
of p′ that reaches a state in R will eventually reach a state in T . Towards this
end, we rank all states s based on the length of the shortest computation prefix
of p from s to a state in T . In such ranking, if no state of T is reachable from s
then the rank of s will be infinity. Also, the rank of states in T is zero.

There exist two obstacles in guaranteeing the reachability from R to T : (1)
the deadlock states reachable from R, and (2) cycles reachable from R where
the computations of p′ may be trapped forever. We may create deadlock states
by (i) removing safety-violating transitions (Step 1 in Figure 1), and (ii) making
infinity-ranked states unreachable in Step 3.

To deal with the deadlock states, we make them unreachable by removing
transitions that reach a deadlock state (Step 4 in Figure 1). Such removal of
transitions may introduce new deadlock states that are removed in the while
loop in Step 4. If the removal of deadlock states culminates in making an initial
state deadlocked then (R 7→ T) cannot be added to p. Otherwise, we again rank
all states (in Step 5) since we might have removed some deadlock states in T ,
and as a result, we might have created new infinity-ranked states. We repeat
the above steps until no reachable state in R has the rank infinity. At this point
(end of repeat-until in Step 6), there is a path from each state in R to a T state.
However, there may be cycles that are reachable from a state in R.

6 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

Add UNITY(Ip: state predicate, p: set of transitions, R,T : state predicate, B: safety specification)
{ // Sp is the state space of p.

p1 := p − {(s0, s1) | (s0, s1) ∈ B}; (1)
∀s : s ∈ Sp : Rank(s) = the length of the shortest computation prefix of p1 (2)

that starts from s and ends in a state in T ;
//Rank(s) = ∞ means T is not reachable from s.

repeat{
p1 := p1−{(s0, s1) | (s1 ∈ R) ∧ Rank(s1) = ∞}; (3)
while (∃s0 :: (∀s1 : s1∈Sp : (s0, s1) 6∈p1)) { (4)

If (s0 /∈Ip) then p1 := p1 − {(s, s0) | (s, s0) ∈ p1};
else declare that the addition is not possible; exit();

}
∀s : s ∈ Sp : Rank(s) = the length of the shortest computation prefix of p1 (5)

that starts from s and ends in a state in T ;
} until (∀s : (s ∈ R) ∧ (s is reachable in p1) : Rank(s) 6= ∞) (6)
return p1 − {(s0, s1) | Rank(s0) < Rank(s1)}; (7)

}

Fig. 1. Adding one leads-to and multiple safety properties.

To deal with such cycles from R, we remove transitions from low-ranked states
to high-ranked states (Step 7 in Figure 1). In particular, if Rank(s0) < Rank(s1)
then that means there exists a shorter computation prefix from s0 to T with
respect to the computation prefix from s1 to T . Thus, removing (s0, s1) will not
make s0 deadlocked. (Note that in Step 7, transitions of the form (s0, s1), where
Rank(s0) = ∞ and Rank(s1) = ∞, are not removed. Hence, computations in
which neither predicates R and T are reached will not be affected.)
Theorem 4.1 The algorithm Add UNITY is sound.
Proof. Since Add UNITY does not add any new states to Sp, we have Sp′ =
Sp. Likewise, Add UNITY does not remove (respectively, introduce) any initial
states; we have Ip′ = Ip. The Add UNITY algorithm only updates δp by exclud-
ing some transitions from δp in Steps 1, 3, 4, and 7. It follows that δp′ ⊆ δp.
By construction, Add UNITY removes all deadlock states in Step 4. Thus, if
Add UNITY generates a program p′ in Step 7 then reachability from R to T is
guaranteed in p′. Thus, p′ meets all the requirements of the addition problem.

ut
Theorem 4.2 The algorithm Add UNITY is complete.
Proof. Note that any transition removed in Add UNITY (in Steps 1, 3, and 4)
must be removed in any program that meets the requirements of the addition
problem. Hence, when failure is declared (in Step 4), it follows that a solution
to the addition problem does not exist. ut
Theorem 4.3 The time complexity of Add UNITY algorithm is polynomial in
Sp.
Proof. The proof follows from the polynomial-time complexity of each step of
Add UNITY. ut

In Section 6, we demonstrate our algorithm in the local redesign of a token
passing mutual exclusion program. We have also used our algorithm in the local
redesign of a readers-writers program in [3].

Revising UNITY Programs: Possibilities and Limitations 7

5 Adding Two Leads-to Properties
In this section, we show that the addition of a UNITY specification, which is
the conjunction of two leads-to properties, to a program is NP-complete. We
show this by presenting a reduction from the 3-SAT problem to an instance of
the decision problem defined below. The instance and the decision problem for
adding two leads-to properties are as follows:
Instance. An instance of the addition problem for two leads-to properties
consists of a program p , its state space Sp , set of initial states Ip , transitions
δp , and specn = L1 ∧ L2, where L1 ≡ P 7→ Q and L2 ≡ R 7→ T , and P,Q,R,
and T are state predicates.
The decision problem.
Given is an instance of the addition problem for two leads-to properties:

Does there exist a program p′, its state space Sp′ , and its set of initial
states Ip′ such that
Sp = Sp′ , Ip′ = Ip , δp′ ⊆ δp , and p′ satisfies specn = L1 ∧ L2?

The 3-SAT problem is as follows: Let x1, x2, ..., xn be propositional variables.
Given is a Boolean formula y = y1 ∧ y2 · · · ∧ yM , where each yj (1 ≤ j ≤ M)
is a disjunction of exactly three literals. Does there exist an assignment of truth
values to x1, x2, ..., xn such that y is satisfiable?

Next, in Subsection 5.1, we present a polynomial-time mapping from 3-SAT
to an instance of the decision problem. Then, in Subsection 5.2, we show that
the 3-SAT problem is satisfiable iff the answer to the above decision problem is
affirmative for the instance introduced in Subsection 5.1.

5.1 Mapping 3-SAT to the Addition of Two Leads-to Properties

We now present the mapping of an instance of the 3-SAT problem to an instance
of the problem of adding two leads-to properties. First, we introduce the state
space and the initial states of the instance of the addition problem corresponding
to each variable xi and each disjunction yj . We also introduce the state predicates
P,Q,R, and T that define specn. Then, we present the transitions of the instance
corresponding to each variable xi and each disjunction yj .
The state space, initial states, and state predicates P,Q,R, and T .
Corresponding to each variable xi of the given 3-SAT instance, we introduce
six states Pi, ai, Qi, Ri, bi, and Ti, where 1 ≤ i ≤ n (see Figure 2). For each
disjunction yj , we introduce a state cj , where 1 ≤ j ≤ M , in the state space.
Thus,

– Sp = {Pi, ai, Qi, Ri, bi, Ti | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ M}
– Ip = {cj | 1 ≤ j ≤ M}
– P = {Pi | 1 ≤ i ≤ n}, Q = {Qi | 1 ≤ i ≤ n}, R = {Ri | 1 ≤ i ≤ n}, and

T = {Ti | 1 ≤ i ≤ n}

The program transitions. Corresponding to each variable xi, we include
transitions (Pi, ai), (ai, bi), (bi, Qi), (Qi, Qi), (Ri, bi), (bi, ai), (ai, Ti), and (Ti, Ti)
in the set of program transitions δp (see Figure 2). Moreover, corresponding to
each disjunction yj , we include the following transitions:

8 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

ai bi

Pi

Qi

Ri

Ti

Fig. 2. Mapping of variables in the 3-SAT problem.

– If xi is a literal in yj then we include the transition (cj , Pi).
– If ¬xi is a literal in yj then we include the transition (cj , Ri).

5.2 Reduction from the 3-SAT Problem

In this subsection, we show that the given instance of 3-SAT is satisfiable iff
both leads-to properties L1 ≡ (P 7→ Q) and L2 ≡ (R 7→ T) can be added to the
problem instance defined in Subsection 5.1.
Part I. First, we show that if the given instance of the 3-SAT formula is
satisfiable then there exists a solution that meets the requirements of the decision
problem. Since the 3-SAT formula is satisfiable, there exists an assignment of
truth values to variables xi, 1 ≤ i ≤ n, so that each yj , 1 ≤ j ≤ M , is true. Now,
we identify a program p′ that is obtained by adding the leads-to properties L1

and L2 to program p as follows.

– The state space of p′ consists of all the states of p, i.e., Sp′ = Sp.
– The initial states of p′ consists of all the initial states of p, i.e., Ip′ = Ip.
– For each variable xi, if xi is true then we include the transitions (Pi, ai),

(ai, bi), (bi, Qi), and (Qi, Qi).
– For each variable xi, if xi is false then we include the transitions (Ri, bi),

(bi, ai), (ai, Ti), and (Ti, Ti).
– For each disjunction yj that contains xi, we include the transition (cj , Pi) if

xi is true.
– For each disjunction yj that contains ¬xi, we include the transition (cj , Ri)

if xi is false.

As an illustration, we show the partial structure of p′, for the formula [(x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4)], where x1 = true, x2 = false, x3 = false, and
x4 = false in Figure 3.
Now, we show that p′ meets the requirements of the decision problem.

– The first three constraints of the decision problem are trivially satisfied.

Revising UNITY Programs: Possibilities and Limitations 9

c1

a1 b1

P1

Q1

a2 b2

R2

T2

c2

a4 b4

R4

T4

a3 b3

R3

T3

Fig. 3. The partial structure of the revised program.

– It is easy to observe that by construction, there are no deadlock states.
Hence, for the UNITY specification spece if p satisfies spece then p′ also
satisfies spece. Moreover, if a computation of p′ reaches Pi from some initial
state (i.e., xi is true) then that computation will eventually reach Qi and
will stay there, since p′ does not include the transition (bi, ai). Likewise, if
a computation of p′ reaches Ri from some initial state (i.e., xi is false) then
that computation will eventually reach Ti and will stay there, since p′ does
not include the transition (ai, bi). Thus, p′ satisfies both L1 and L2.

Part II. Next, we show that if there exists a solution to the instance identified
in Subsection 5.1, then the given 3-SAT formula is satisfiable. Let p′ be the
program that is obtained by adding the two leads-to properties to program p.
Now, to obtain the solution for 3-SAT, we proceed as follows. If there exists a
computation of p′ where state Pi is reachable then we assign xi the truth value
true. Otherwise, we assign it the truth value false.

We now show that the above truth assignment satisfies all disjunctions. Let
yj be any disjunction and let cj be the corresponding state in p′. Since cj is
an initial state and p′ cannot deadlock, there must be some transition from cj .
This transition terminates in either Pi or Ri, for some i. If the transition from
cj terminates in Pi then yj contains literal xi and xi is assigned the truth value
true. Hence, yj evaluates to true. If the transition from cj terminates in Ri

then Pi should not be reachable. Otherwise, (i) transitions (Ri, bi), (bi, ai), and
(ai, Ti) must be included to ensure that R 7→ T is satisfied, and (ii) transitions
(Pi, ai), (ai, bi), and (bi, Qi) must also be included to guarantee that P 7→ Q
is satisfied. Since the inclusion of all six transitions (Pi, ai), (ai, bi), (bi, Qi),
(Ri, bi), (bi, ai), and (ai, Ti) causes violation of P 7→ Q and R 7→ T , it follows
that Pi must not be reached in any computation of p′ if Ri is reachable. Thus, if
Ri is reachable then xi will be assigned the truth value false. Since in this case
yj contains ¬xi, the disjunction yj evaluates to true. Therefore, the assignment

10 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

of values considered above is a satisfying truth assignment for the given 3-SAT
formula. ut
Theorem 5.1 The addition of two leads-to properties to UNITY programs is
NP-complete.
Proof. The NP-hardness of adding two leads-to properties follows from the
reduction presented in this section. Also, given a solution (in terms of p′ con-
sisting of Sp′ , Ip′ , δp′) to the instance of the decision problem, one can verify the
requirements (1) Sp′ = Sp , (2) Ip′ = Ip , (3) δp′ ⊆ δp , and (4) p′ satisfies
specn in polynomial time. Thus, the membership to NP follows. Therefore, the
problem of adding two leads-to properties is NP-complete. ut

6 Example: Mutual Exclusion

In this section, we illustrate the role of the algorithm Add UNITY in deciding
about local or comprehensive redesign of a token passing mutual exclusion (ME)
program. We use Dijkstra’s guarded commands (actions) [4] as the shorthand
for representing the set of program transitions. A guarded command g → st
captures the transitions {(s0, s1) : the state predicate g is true in s0, and s1 is
obtained by atomic execution of statement st in state s0 }.

The initial ME program has two competing processes P1 and P2. Each process
Pj (j = 0, 1) has three Boolean variables nj , cj , and tj , where (i) tj represents
whether or not Pj is trying to enter its critical section (i.e., trying section), (ii)
cj represents whether or not Pj is in its critical section, and (iii) nj represents
whether or not Pj intends to enter its trying section (i.e., non-trying section).
The variables of Pj are mutually exclusive; i.e., the condition (tj ⇒ (¬nj ∧
¬cj))∧ (nj ⇒ (¬tj ∧¬cj))∧ (cj ⇒ (¬nj ∧¬tj)) holds. We denote a state of ME
by 〈s0, s1〉, where s0 represents the state of P0 and s1 represents the state of P1.
Also, we represent the actions of a process j (j = 0, 1) as follows:

ME1j : nj −→ tj := true;nj := false;
ME2j : tj −→ cj := true; tj := false;
ME3j : cj −→ nj := true; cj := false;

For simplicity, we illustrate the reachability graph of the initial ME program
in Figure 4 that shows all reachable states from the initial state sinit , where both
processes are in their non-critical sections. We have annotated each transition
with the index of the process that executes that transition.

In the initial state of ME, both processes are in their non-trying section (i.e.,
n0 = true and n1 = true). The ME program satisfies its safety property that
stipulates P0 and P1 must not enter the critical section simultaneously (i.e.,
Invariant(¬(c0 ∧ c1))). Also, the initial ME program only satisfies cj 7→ nj .
Next, we trace Add UNITY to add the leads-to property t0 7→ c0 to ME while
preserving c0 7→ n0. For reasons of space, we omit the addition of t1 7→ c1 as it
is similar to the addition of t0 7→ c0.
Step 1. Since ME already satisfies its safety property, no transitions are re-
moved at the first step of Add UNITY.

Revising UNITY Programs: Possibilities and Limitations 11

n1n0

t 0 n1

n1c0

n0 t 1

n0 c1t 0 t 1

c0 t 1 c1t 0

1

1

1

1

1

1

1

0

0

0

0

0 0

0

Fig. 4. The reachability graph of program ME.

Step 2. The Add UNITY algorithm ranks all states based on their shortest
computation prefix to states where c0 is true. As a result, the rank of 〈t0, t1〉
becomes 1 and the rank of 〈t0, c1〉 becomes 2.
Step 3. Since there exist no states with rank ∞, Add UNITY does not remove
any transitions in Step 3.
Step 4. Since the execution of Steps 2 and 3 does not create any deadlock
states, Add UNITY does not modify the program structure in Step 4.
Step 5 and 6. The ranking of the states will not be changed in Step 5. Also,
Add UNITY exits the repeat-until loop since no state where t0 holds has a rank
of ∞.
Step 7. Finally, in Step 7, Add UNITY removes the transition 〈t0, t1〉 → 〈t0, c1〉
since the rank of 〈t0, t1〉 is 1 and the rank of 〈t0, c1〉 is 2 (see Figure 4). Likewise,
in the addition of t1 7→ c1, the transition 〈t0, t1〉 → 〈c0, t1〉 is removed (see Figure
4).

A similar execution of Add UNITY for the addition of t1 7→ c1 results in the
synthesis of the following (⊕ denotes modulo 2 addition):

ME1′j : nj ∧ ¬t(j⊕1) −→ tj := true;nj := false;
ME2′j : tj ∧ n(j⊕1) −→ cj := true; tj := false;
ME3′j : cj −→ nj := true; cj := false;

Note that, the above program does not satisfy nj 7→ tj . Now, if we use
Add UNITY for the addition of nj 7→ tj , while preserving tj 7→ cj and cj 7→ nj ,
then Add UNITY will declare failure because the initial state will be deadlocked.
In the context of this example, the addition of the above properties will fail
regardless of the order of their addition. Thus, based on the completeness of
Add UNITY, it follows that the initial program cannot be revised to a program
that simultaneously satisfies the above leads-to properties. This is an interesting
result that enlightens designers to search for other solutions where one adds
new variables and computations to the ME program (e.g., Peterson’s solution)
instead of spending time on modifying the initial ME program.

7 Related Work

In this section, we illustrate how the contributions of this paper differ from
existing approaches for program synthesis and verification. Existing synthesis

12 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

methods in the literature mostly focus on deriving the synchronization skele-
ton of a program from its specification (expressed in terms of temporal logic
expressions or finite-state automata) [5–11], where the synchronization skeleton
of a program is an abstract structure of the code of the program implementing
inter-process synchronization. Although such synthesis methods may have dif-
ferences with respect to the input specification language and the program model
that they synthesize, the general approach is based on the satisfiability proof of
the specification. This makes it difficult to provide reuse in the synthesis of pro-
grams; i.e., any change in the specification requires the synthesis to be restarted
from scratch. By contrast, since the input to our algorithm (cf. Figure 1) is the
set of transitions of a program, our approach has the potential to reuse those
transitions in incremental synthesis of a revised version of the input program.

The algorithms for automatic addition of fault-tolerance [12–16] add fault-
tolerance concerns to existing programs in the presence of faults, and guarantee
not to add new behaviors to that program in the absence of faults. The problem of
adding fault-tolerance is orthogonal to the problem of adding UNITY properties
in that one could use the algorithms of [12–16] to add fault-tolerance concerns
to a UNITY program synthesized by the algorithm presented in this paper. On
the other hand, we plan to investigate the addition of UNITY properties to
fault-tolerant programs while preserving their fault-tolerance properties.
Run-time verification. Runtime verification techniques focus on monitoring
the program behavior at runtime with respect to a given specification [17]. Also,
such techniques provide a mechanism for ensuring the correctness of program
execution after monitoring violations of desired properties [18]. Such approaches
mostly focus on the verification of safety properties [19–22] and also provide
mechanisms for exception handling and dealing with deadlocks at runtime. By
contrast, our focus is on off-line addition of UNITY properties to programs where
we ensure that the synthesized program satisfies its existing and newly added
properties. Also, to the best of our knowledge, the runtime verification of leads-to
properties is still an open question.

8 Discussion

In this section, we address some questions raised about the limitations and the
applications of the results presented in this paper. We proceed as follows:
Stepwise application of Add UNITY. The Add UNITY algorithm can be used
in a stepwise fashion. While such a stepwise use of Add UNITY to add multiple
leads-to properties will be sound, it is not complete. This is due to the fact that
during the addition of the first leads-to property, the transitions removed in the
last step (Step 7 in Figure 1) may cause failure in adding the subsequent leads-
to property. Therefore, this does not contradict the NP-completeness result in
Section 5.
Addition of other UNITY properties. The Add UNITY algorithm shows
that it is possible to add several safety (stable, invariant and unless) properties
and one leads-to property in polynomial time. Since ensures is a conjunction of
unless and leads-to properties, this algorithm can be trivially extended to deal

Revising UNITY Programs: Possibilities and Limitations 13

with the case where one adds several safety properties and an ensures property.
Also, one can use Add UNITY to add the until property in Linear Temporal Logic
(LTL) [23] to programs as ensures is semantically the same as until in LTL.

However, in the context of adding multiple leads-to properties, there are
several open questions. For example, is it possible to combine these leads-to
properties with other (specific) properties to obtain efficient solutions? To il-
lustrate this, it is straightforward to observe that adding ‘invariant(¬P) ∧
(P 7→ Q) ∧ (R 7→ T)’ can be added efficiently, as it corresponds to adding
‘invariant(¬P) ∧ (R 7→ T)’. Moreover, the complexity of adding two ensures
properties is still an open question. (Note that the complexity of adding two
ensures properties does not necessarily follow from the results in Section 5; as
discussed earlier in this paragraph, combining leads-to properties with certain
safety properties, does permit polynomial time solutions.)
Implementing Add UNITY using model checking. The algorithm Add UNITY
can also be implemented with the help of a model checker as follows: For this
exposition, consider the case where a program, say p, is specified as a set of
transitions, as defined in Section 2. When p is checked with a model checker
with respect to a leads-to property (R 7→ T) and found to be incorrect, the
counterexamples will be of one of the following two forms: (1) There exists a
state sd such that sd is reachable in computations of p and sd is a deadlocked
state, or (2) There exists a state, say sr ∈ R that is reachable in a program
computation and that program computation can be extended to reach a cycle,
say s0, s1, · · · , sn(= s0) such that T is never satisfied. In the former case, transi-
tions terminating in sd need to be removed. In the latter case, we need to check
if there exists a computation prefix of p that starts in one of the states in the
cycle and reaches T . (This case could also be checked with a model checker.) If
such a computation prefix does not exist then the state sr and all its incident
transitions should be removed. If such a computation prefix exists and sj is the
last state from the cycle to appear on that path then the transition (sj , sj+1)
in the cycle should be removed. After removing the transitions in this fashion,
we can repeat the process with the new program until a solution is found. (We
leave it to the reader to verify that this approach is also sound and complete.)
The choice of the initial program. The algorithm Add UNITY takes the
initial program p and adds a set of UNITY properties to p if possible. The choice
of the initial program can affect the result of addition in that if we start with
an initial program that is maximal, i.e., has the maximal non-determinism, then
the chance of a successful addition is higher. This issue is particularly important
for a step-wise application of the Add UNITY algorithm.

9 Conclusion and Future Work

In this paper, we focused on the problem of revising UNITY [1] programs where
one adds a conjunction of UNITY properties unless, stable, invariant, ensures,
and leads-to to an existing program to provide new functionalities while preserv-
ing the existing functionalities. This is an important problem given the dynamic
nature of the requirements of computing systems, where developers need to con-

14 Ali Ebnenasir, Sandeep S. Kulkarni, and Borzoo Bonakdarpour

stantly revise existing programs due to newly-discovered user requirements. In
particular, we formally defined the problem of adding UNITY properties to
programs. Afterwards, we presented a sound and complete algorithm for such
addition where one automatically (i) verifies if it is possible to add a conjunc-
tion of UNITY properties to a program and preserve the existing properties,
and (ii) adds a conjunction of UNITY properties to a program if such addition
is possible.

More importantly, we showed that if one adds a single leads-to property and
a conjunction of unless, stable, and invariant properties to a program then the
complexity of such addition will be polynomial in program state space. However,
in general, we showed a surprising result that simultaneous addition of two leads-
to properties to a program is NP-complete. Hence, revising UNITY programs
would be significantly easier if one added a single leads-to property instead of
adding more than one leads-to property. Since ensures can be expressed as the
conjunction of an unless property and a leads-to property, the algorithm pre-
sented in this paper for adding a leads-to property and a conjunction of unless,
stable, and invariant properties can be used for the addition of ensures property
as well. Nonetheless, to the best of our knowledge, the complexity of adding two
ensures properties to UNITY programs is still an open problem.

To extend the results of this paper, we plan to integrate the algorithm pre-
sented in this paper with model checking algorithms to provide automated assis-
tance for developers. As a result, if the model checking of a model with respect to
a UNITY property fails then our algorithm automatically (i) determines whether
or not the model is fixable, and (ii) fixes the model if it is fixable.

References

1. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

2. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

3. Ali Ebnenasir and Sandeep Kulkarni. Automatic addition of liveness. Technical
Report MSU-CSE-04-22, Department of Computer Science, Michigan State Uni-
versity, East Lansing, Michigan, June 2004.

4. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.

5. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

6. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68–93, 1984.

7. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of
the 16th ACM Symposium on Principles of Programming Languages, pages 179–
190, 1989.

8. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proceeding of 16th International Colloqium on Automata, Languages, and Pro-
gramming, Lec. Notes in Computer Science 372, Springer-Verlag:652–671, 1989.

Revising UNITY Programs: Possibilities and Limitations 15

9. A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant con-
current programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 26(1):125–185, 2004. (A preliminary version of this paper appeared in
Proceedings of the 17th ACM Symposium on Principles of Distributed Computing,
1998.).

10. P. Attie. Synthesis of large concurrent programs via pairwise composition. CON-
CUR’99: 10th International Conference on Concurrency Theory, Lecture Notes In
Computer Science, 1664:130–145, 1999.

11. P. Attie and A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. ACM TOPLAS, 23(2):187–242, March 2001.
(A preliminary version of this paper appeared in PODC96.).

12. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Proceed-
ings of the 6th International Symposium of Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 82–93, 2000.

13. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine
agreement. Symposium on Reliable Distributed Systems, pages 130–139, 2001.

14. S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-tolerance.
Proceedings of the 22nd International Conference on Distributed Computing Sys-
tems, pages 337–344, 2002.

15. S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking pro-
grams. Proceedings of the 23rd International Conference on Distributed Computing
Systems, pages 441–449, 2003.

16. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In
Proceedings of the International Conference on Dependable Systems and Networks,
Palazzo dei Congressi, Florence, Italy, pages 209 – 218, June 28 - July 1 2004.

17. K. Havelund and G. Rosu. Runtime verification. Formal Methods in System Design.
Special issue dedicated to RV’01, 24(2), 2004.

18. F. Chen, M. D’Amorim, and G. Rosu. A formal monitoring-based framework
for software development and analysis. Sixth International Conference on Formal
Engineering Methods (ICFEM), pages 357–372, November 2004.

19. Bernd Fisher, Johann Schumann, and Mike Whalen. Synthesizing certified code.
Proceedings of the International Symposium of Formal Methods Europe (FME’02),
Lecture Notes In Computer Science, 2391:431–450, 2002.

20. Ewen Denney, Bernd Fischer, and Johann Schumann. Adding assurance to auto-
matically generated code. In Proceedings the 8th IEEE International Symposium
on High Assurance Systems Engineering (HASE 2004), pages 297–299, March 2004.

21. Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS’02),
volume 2280 of Lecture Notes in Computer Science, pages 342–356, October 2002.

22. K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of multithreaded programs.
In ACM SIGSOFT Conference on the Foundations of Software Engineering /Eu-
ropean Software Engineering Conference, Helsinki, Finland, pages 337–346, 2003.

23. E.A. Emerson. Handbook of Theoretical Computer Science: Chapter 16, Temporal
and Modal Logic. Elsevier Science Publishers B. V., 1990.

