Skip to main content

Parsimonious Asynchronous Byzantine-Fault-Tolerant Atomic Broadcast

  • Conference paper
Principles of Distributed Systems (OPODIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3974))

Included in the following conference series:

Abstract

Atomic broadcast is a communication primitive that allows a group of n parties to deliver a common sequence of payload messages despite the failure of some parties. We address the problem of asynchronous atomic broadcast when up to t < n/3 parties may exhibit Byzantine behavior. We provide the first protocol with an amortized expected message complexity of \(\mathcal{O}(n)\) per delivered payload. The most efficient previous solutions are the BFT protocol by Castro and Liskov and the KS protocol by Kursawe and Shoup, both of which have message complexity \(\mathcal{O}(n^2)\). Like the BFT and KS protocols, our protocol is optimistic and uses inexpensive mechanisms during periods when no faults occur; when network instability or faults are detected, it switches to a more expensive recovery mode. The key idea of our solution is to replace reliable broadcast in the KS protocol by consistent broadcast, which reduces the message complexity from \(\mathcal{O}(n^2)\) to \(\mathcal{O}(n)\) in the optimistic mode. But since consistent broadcast provides weaker guarantees than reliable broadcast, our recovery mode incorporates novel techniques to ensure that safety and liveness are always satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

    Article  Google Scholar 

  2. Cachin, C.: Distributing trust on the Internet. In: Proc. Intl. Conf. Dependable Systems and Networks, pp. 183–192 (2001)

    Google Scholar 

  3. Schneider, F.B., Zhou, L.: Distributed trust: Supporting fault-tolerance and attack-tolerance. Technical Report TR 2004-1924, Cornell University (2004)

    Google Scholar 

  4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 372–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rabin, M.O.: Randomized Byzantine generals. In: Proc. 24th Symp. Foundations of Computer Science, pp. 403–409 (1983)

    Google Scholar 

  6. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal resilience. In: Proc. 25th Symp. Theory of Computing, pp. 42–51 (1993)

    Google Scholar 

  7. Berman, P., Garay, J.A.: Randomized distributed agreement revisited. In: Proc. 23th Intl. Symp. Fault-Tolerant Computing, pp. 412–419 (1993)

    Google Scholar 

  8. Berman, P., Bharali, A.A.: Quick atomic broadcast. In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 189–203. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: Birman, K.P., Mattern, F., Schiper, A. (eds.) Dagstuhl Seminar 1994. LNCS, vol. 938, pp. 99–110. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The SecureRing protocols for securing group communication. In: Proc. 31st Hawaii Intl. Conf. on System Sciences, pp. 317–326 (1998)

    Google Scholar 

  11. Ramasamy, H.V., Pandey, P., Lyons, J., Cukier, M., Sanders, W.H.: Quantifying the cost of providing intrusion tolerance in group communication systems. In: Proc. Intl. Conf. Dependable Systems and Networks, pp. 229–238 (2002)

    Google Scholar 

  12. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols (extended abstract). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. Journal of Cryptology 18(3) (2005)

    Google Scholar 

  14. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems 20(4), 398–461 (2002)

    Article  Google Scholar 

  15. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 204–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Bracha, G.: An asynchronous [(n − 1)/3]-resilient consensus protocol. In: Proc. 3rd Symp. Principles of Distributed Computing, pp. 154–162 (1984)

    Google Scholar 

  17. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in Rampart. In: Proc. 2nd ACM Conference on Computer and Communications Security, pp. 68–80 (1994)

    Google Scholar 

  18. Ramasamy, H.V., Cachin, C.: Parsimonious asynchronous Byzantine-fault-tolerant atomic broadcast. Cryptology ePrint Archive, Report 2006/082 (2006), http://eprint.iacr.org/

  19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

    Google Scholar 

  21. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. Distributed Systems (2nd edn.), 97–145 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramasamy, H.V., Cachin, C. (2006). Parsimonious Asynchronous Byzantine-Fault-Tolerant Atomic Broadcast. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds) Principles of Distributed Systems. OPODIS 2005. Lecture Notes in Computer Science, vol 3974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795490_9

Download citation

  • DOI: https://doi.org/10.1007/11795490_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36321-7

  • Online ISBN: 978-3-540-36322-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics