Skip to main content

Handling Incomplete and Complete Tables in Tabled Logic Programs

Extended Abstract

  • Conference paper
Logic Programming (ICLP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4079))

Included in the following conference series:

Abstract

Most of the recent proposals in tabling technology were designed as a means to improve the performance of particular applications in key aspects of tabled evaluation like re-computation and scheduling. The discussion we address in this work was also motivated by our recent attempt [1] of applying tabling to Inductive Logic Programming (ILP) [2]. ILP applications are very interesting for tabling because they have huge search spaces and do a lot of re-computation. Moreover, we found that they are an excellent case study to improve some practical limitations of current tabling execution models. In particular, we next focus on the table space and how to efficiently handle incomplete and complete tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rocha, R., Fonseca, N.A., Santos Costa, V.: On Applying Tabling to Inductive Logic Programming. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 707–714. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Muggleton, S.: Inductive Logic Programming. In: Conference on Algorithmic Learning Theory, Ohmsma, pp. 43–62 (1990)

    Google Scholar 

  3. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pp. 78–89. ACM, New York (2004)

    Chapter  Google Scholar 

  4. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to Support Parallelism. In: Conference on Tabulation in Parsing and Deduction, pp. 77–87 (2000)

    Google Scholar 

  5. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A Preliminary Report. Technical Report DCC-2003-02, Department of Computer Science, University of Porto (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, R. (2006). Handling Incomplete and Complete Tables in Tabled Logic Programs. In: Etalle, S., Truszczyński, M. (eds) Logic Programming. ICLP 2006. Lecture Notes in Computer Science, vol 4079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11799573_34

Download citation

  • DOI: https://doi.org/10.1007/11799573_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36635-5

  • Online ISBN: 978-3-540-36636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics