Abstract
Kernel Matching Pursuit Machine (KMPM) is a relatively new learning algorithm utilizing Mercer kernels to produce non-linear version of conventional supervised and unsupervised learning algorithm. But the commonly used Mercer kernels can’t expand a set of complete bases in the feature space (subspace of the square and integrable space). Hence the decision-function found by the machine can’t approximate arbitrary objective function in feature space as precise as possible. Multiresolution analysis (MRA) shows promise for both nonstationary signal approximation and pattern recognition, so we combine KMPM with multiresolution analysis technique to improve the performance of the machine, and put forward a MRA shift-invariant kernel, which is a Mercer admissive kernel by theoretical analysis. An MRA kernel matching pursuit machine (MKMPM) is constructed in this paper by Shannon MRA shift-invariant kernel. It is shown that MKMPM is much more effective in the problems of regression and pattern recognition by a large number of comparable experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Processing 52(8), 2275–2285 (2004)
Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine Learning 48, 165–187 (2002)
Davis, G., Mallat, S., Zhang, Z.: Adaptive time-frequency decompositions. Optical Engineering 33(7), 2183–2191
Mallat, S.: A theory for nuliresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989)
Bastys, A.: Periodic shift-invariant multiresolution analysis. In: IEEE, Digital Signal Processing Workshop Proceedings, pp. 398–400 (1996)
Zhang, L., Zhou, W.D., Jiao, L.C.: Wavelet support vector machine. IEEE Trans. On Systems, Man, and Cybernetics. Part B: Cybernetics. 34(1) (February 2004)
Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-out cross validation. In: Proc. Tenth Conf. Comput. Learning Theory., pp. 152–162. ACM Press, New York (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Q., Jiao, L., Yang, S. (2006). MRA Kernel Matching Pursuit Machine. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_128
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_128
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)