Skip to main content

Iterative Modular Division over GF(2m): Novel Algorithm and Implementations on FPGA

  • Conference paper
Reconfigurable Computing: Architectures and Applications (ARC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3985))

Included in the following conference series:

  • 1026 Accesses

Abstract

Public key cryptography is a concept used by many useful functionalities such as digital signature, encryption, key agreements, ... For those needs, elliptic curve cryptography is an attractive solution.

Cryptosystems based on elliptic curve need a costly modular division. Depending on the choice of coordinates, this operation is requested at each step of algorithms, during a precomputation phase or at the end of the whole computation. As a result, efficient modular division implementations are useful for both area constrained designs working in affine coordinates and high-speed processors.

For that purpose, this work highlights the most efficient iterative modular division algorithm and explores different time and area tradeoffs on FPGA. First, thanks to a novel algorithm, the computational time is divided by two with an area increase of one half. Second, using the Single-Instruction Multiple-Data feature of the selected algorithm, the area is divided by two with a doubling of the computational time.

To the best of our knowledge, it is the first report about an iterative digit-serial modular division algorithm, the first area and time tradeoff analysis of an iterative algorithm and the best result among the very few implementations on FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, H., Bock, H., Hütter, M., Wolkerstorfer, J.: A Low-Cost ECC Coprocessor for Smartcards. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 107–118. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Brunner, H., Curiger, A., Hofstetter, M.: On Computing Multiplicative Inverses in GF(2m). IEEE Trans. on computers 42(8), 1010–1015 (1993)

    Article  MathSciNet  Google Scholar 

  3. Brent, R.P., Kung, H.T.: Systolic VLSI Arrays for Polynomial GCD Computation. IEEE Trans. on Computers 33(8), 731–736 (1984)

    Article  MATH  Google Scholar 

  4. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Lecture Notes Series, vol. 265. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, v1.0 (2000)

    Google Scholar 

  6. Daneshbeh, A.K., et al.: A Class of Unidirectional Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2m). Tr. on Comp. 54(3), 370–380 (2005)

    Article  MATH  Google Scholar 

  7. Kim, C.H., Kwon, S., Kim, J.J., Hong, C.P.: A Compact and Fast Division Architecture for a Finite Field GF(2m). In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 855–864. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving Revisited. IEEE Trans. on Computers 53(8), 1047–1059 (2004)

    Article  Google Scholar 

  9. Guo, J.-H., Wang, C.-L.: Novel digit-serial systolic array implementation of Euclid’s algorithm for division in GF(2m). In: ISCAS 1998, pp. 478–481 (1998)

    Google Scholar 

  10. Gura, N., Shantz, S.C., Eberle, H., Gupta, S., Gupta, V., Finchelstein, D., et al.: An End-to-End Systems Approach to Elliptic Curve Cryptography. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 349–365. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Gutub, A.A.-A.: New Hardware Algorithms and Designs for Montgomery Modular Inverse Computation in Galois Fields GF(p) and GF(2n), Ph.D. Thesis (2002)

    Google Scholar 

  12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer Professional computing. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Hasan, M.A., Bhargava, V.K.: Bit-Serial Systolic Divider and Multiplier for Finite Fields GF(2m). IEEE Trans. on Computers 41(8), 972–980 (1992)

    Article  MathSciNet  Google Scholar 

  14. Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases. Information and Comp. 78, 171–177 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koblitz, N.: Elliptic curve cryptosystems. Math. of Comp. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  17. U.S. Department of Commerce/National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS), FIPS PUB 182-2change1 (2000)

    Google Scholar 

  18. Okeya, K., Sakurai, K.: Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 564–578. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Stein, J.: Computational problems associated with Racah algebra. J. Computational Physics 1, 397–405 (1967)

    Article  MATH  Google Scholar 

  20. Wu, C.-H., et al.: High-Speed, Low-Complexity Systolic Designs of Novel Iterative Division Algorithms in GF(2m). IEEE Trans. on Computers 53(3), 375–380 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Dormale, G.M., Quisquater, JJ. (2006). Iterative Modular Division over GF(2m): Novel Algorithm and Implementations on FPGA. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds) Reconfigurable Computing: Architectures and Applications. ARC 2006. Lecture Notes in Computer Science, vol 3985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802839_45

Download citation

  • DOI: https://doi.org/10.1007/11802839_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36708-6

  • Online ISBN: 978-3-540-36863-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics