Skip to main content

Automatic Extraction of Surface Structures in Digital Shape Reconstruction

  • Conference paper
Geometric Modeling and Processing - GMP 2006 (GMP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Included in the following conference series:

Abstract

One of the most challenging goals in digital shape reconstruction is to create a high-quality surface model from measured data with a minimal amount of user assistance. We present techniques to automate this process and create a digital model that meets the requirements in mechanical engineering CAD/CAM/CAE. Such a CAD model is composed of a hierarchy of different types of surfaces, including primary surfaces, connecting features and vertex blends at their junctions, and obey a well-defined topological structure that we would like to reconstruct as faithfully as possible. First, combinatorially robust segmentation techniques, borrowed from Morse theory, are presented. This is followed by an algorithm to create a so-called feature skeleton, which is a curve network on the mesh that represents the region structure of the object. The final surface structure comprises the optimally located boundaries of edge blends and setback vertex blends, which are well aligned with the actual geometry of the object. This makes the surface structure sufficient for an accurate, CAD-like surface approximation including both quadrangular and trimmed surface representations. A few representative industrial objects reconstructed by Geomagic systems illustrate the efficiency and quality of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. In: Proc. 20th Ann. Symp. on Computational Geometry, pp. 357–365 (2004)

    Google Scholar 

  2. Benko, P., Varady, T.: Algorithms for reverse engineering boundary representation models. Computer-Aided Design 33(11), 839–851 (2001)

    Article  Google Scholar 

  3. Benko, P., Varady, T.: Segmentation methods for smooth point regions of conventional engineering objects. Computer-Aided Design 36, 511–523 (2004)

    Article  Google Scholar 

  4. Braid, I.: Non-local blending of boundary models. Computer-Aided Design 29(2), 89–100 (1997)

    Google Scholar 

  5. Csakany, P., Wallace, A.M.: Computation of local differential parameters on irregular meshes. In: Cipolla, R., Martin, R.R. (eds.) The Mathematics of Surfaces IX, pp. 19–33. Springer, Heidelberg (2000)

    Google Scholar 

  6. Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Computer Graphics, SIGGRAPH 1996, pp. 325–334 (1996)

    Google Scholar 

  7. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Computational Geometry 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Computational Geometry 30, 87–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fitzgibbon, A.W., Eggert, D.W., Fisher, R.B.: High-level CAD model acquisition from range images. Computer-Aided Design 29(4), 321–330 (1997)

    Article  Google Scholar 

  10. Gelfand, N., Guibas, L.J.: Shape Segmentation Using Local Slippage Analysis. In: Eurographics Symposium on Geometry Processing, pp. 214–223 (2004)

    Google Scholar 

  11. http://www.geomagic.com/en/dssp_resources/

  12. Heckbert, P.S., Garland, M.: Survey of Polygonal Surface Simplification Algorithms. In: Multiresolution Surface Modeling Course, SIGGRAPH 1997 (1997)

    Google Scholar 

  13. Huang, J., Menq, C.H.: Automatic data segmentation for geometric feature extraction from unorganized 3D coordinate points. IEEE Trans. Rob. Aut. 17(3), 268–279 (2001)

    Article  Google Scholar 

  14. Leonardis, A., Jaklic, A., Solina, F.: Superquadrics for segmenting and modeling range data. IEEE PAMI 19(11), 1295–1298 (1997)

    Google Scholar 

  15. Lee, A., Sweldens, W., Schroeder, P., Cowsar, L., Dobkin, D.: MAPS: multiresolution adaptive parameterization of surfaces. In: Comput. Graphics, Proc., SIGGRAPH 1998, pp. 95–104 (1998)

    Google Scholar 

  16. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. on Visualization and Computer Graphics (1999)

    Google Scholar 

  17. Marks, P.: Capturing a Competitive Edge through Digital Shape Sampling & Processing (DSSP), SME, Blue Book Series (2005)

    Google Scholar 

  18. Milnor, J.: Morse Theory. Princeton Univ. Press, New Jersey (1963)

    MATH  Google Scholar 

  19. Razdan, A., Baeb, M.S.: A hybrid approach to feature segmentation of triangle meshes. Computer-Aided Design 35, 783–789 (2003)

    Article  Google Scholar 

  20. Sapidis, N.S., Besl, P.J.: Direct Construction of Polynomial Surfaces from Dense Range Images through Region Growing. ACM Trans. on Graphics 14, 171–200 (1995)

    Article  Google Scholar 

  21. Vanco, M., Brunnett, G.: Direct Segmentation of Algebraic Models for Reverse Engineering. Computing, Springer 72(1-2), 207–220 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Varady, T., Hoffmann, C.M.: Vertex blending: problems and solutions. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 501–527. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  23. Varady, T., Martin, R.R.: Reverse Engineering, ch. 26. In: Farin, G., Hoschek, J., Kim, M.–S. (eds.) Handbook of Computer Aided Geometric Design, pp. 651–681. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  24. Varady, T., Facello, M.A.: New trends in digital shape reconstruction. In: Martin, R.R., Bez, H., Sabin, M. (eds.) The Mathematics of Surfaces XI, pp. 395–412. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing. Computer Aided Geometric Design 22, 771–792 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Várady, T., Facello, M.A., Terék, Z. (2006). Automatic Extraction of Surface Structures in Digital Shape Reconstruction. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_1

Download citation

  • DOI: https://doi.org/10.1007/11802914_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics