Abstract
The problem of approximating a given set of data points by splines composed of Pythagorean Hodograph (PH) curves is addressed. In order to solve this highly non-linear problem, we formulate an evolution process within the family of PH spline curves. This process generates a one–parameter family of curves which depends on a time–like parameter t. The best approximant is shown to be a stationary point of this evolution. The evolution process – which is shown to be related to the Gauss–Newton method – is described by a differential equation, which is solved by Euler’s method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alhanaty, M., Bercovier, M.: Curve and surface fitting and design by optimal control methods. Computer–Aided Design 33, 167–182 (2001)
Aigner, M., Jüttler, B.: Hybrid curve fitting. FSP Industrial Geometry, Report no. 2 (2005), available at: http://www.ig.jku.at
Farouki, R.T.: Pythagorean-hodograph curves. In: Handbook of computer aided geometric design, pp. 405–427. North-Holland, Amsterdam (2002)
Farouki, R.T., Kuspa, B.K., Manni, C., Sestini, A.: Efficient solution of the complex quadratic tridiagonal system for \(C\sp 2\) PH quintic splines. Numer. Algorithms 27(1), 35–60 (2001)
Farouki, R.T., Manjunathaiah, J., Jee, S.: Design of rational cam profiles with pythagorean-hodograph curves. Mech. and Mach. Theory 33(6), 669–682 (1998)
Farouki, R.T., Saitou, K., Tsai, Y.-F.: Least-squares tool path approximation with Pythagorean-hodograph curves for high-speed CNC machining. In: The mathematics of surfaces, VIII (Birmingham, 1998), Info. Geom., Winchester, pp. 245–264 (1998)
Hoff, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: SIGGRAPH 1999, New York, pp. 277–286. ACM Press/Addison-Wesley (1999)
Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. A K Peters, Wellesley (1993)
Kubota, K.K.: Pythagorean triplets in unique factorization domains. Amer. Math. Monthly 79, 503–505 (1972)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comp. Vision 1, 321–331 (1987)
Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants. Comput. Aided Geom. Design 18(2), 93–115 (2001)
Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 81(2), 299–309 (1997)
Pottmann, H., Leopoldseder, S.: A concept for parametric surface fitting which avoids the parametrization problem. Comp. Aided Geom. Design 20, 343–362 (2003)
Pottmann, H., Leopoldseder, S., Hofer, M.: Approximation with active B-spline curves and surfaces. In: Proc. Pacific Graphics, pp. 8–25. IEEE Press, Los Alamitos (2002)
Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geometry: recent advances and appl. in CAD. Comp.-Aided Design 37, 751–766 (2005)
Rogers, D., Fog, N.: Constrained B-spline curve and surface fitting. Computer–Aided Design 21, 641–648 (1989)
Šír, Z., Jüttler, B.: Constructing acceleration continuous tool paths using Pythagorean hodograph curves. Mech. and Mach. Theory 40(11), 1258–1272 (2005)
Speer, T., Kuppe, M., Hoschek, J.: Global reparametrization for curve approximation. Comput. Aided Geom. Design 15, 869–877 (1998)
Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by squared distance minimization. ACM Transactions on Graphics 25(2) (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aigner, M., Šír, Z., Jüttler, B. (2006). Least–Squares Approximation by Pythagorean Hodograph Spline Curves Via an Evolution Process. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_4
Download citation
DOI: https://doi.org/10.1007/11802914_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36711-6
Online ISBN: 978-3-540-36865-6
eBook Packages: Computer ScienceComputer Science (R0)