Skip to main content

Tracking Aircrafts by Using Impulse Exclusive Filter with RBF Neural Networks

  • Conference paper
Artificial Intelligence and Neural Networks (TAINN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3949))

Included in the following conference series:

  • 808 Accesses

Abstract

Target Tracking based on Artificial Neural Networks has become a very important research field in Dynamic Signal Processing. In this paper, a new Target Tracking filter, entitled RBF neural network based Target Tracking Filter, RBF-TT, has been proposed. The tracking performance of the proposed filter, RBF-TT, has also been compared with the classical Kalman Filter based Target Tracking algorithm. Predictions during experiments have been made for the civil aircraft positions, one step ahead in real time. Extensive simulations revealed that the proposed filter supplies superior tracking performances to the Kalman Filter based comparison filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, USA (1999)

    Google Scholar 

  2. Bar-Shalom, Y., Blair, W.D.: Multitarget-Multisensor Tracking: Applications and Advances Volume III. Artech House, Inc., USA (2000)

    Google Scholar 

  3. Bar-Shalom, Y., Li, X., Kırubarajan, T.: Estimation with Applications to Tracking and Navigation. Theory Algorithms and Software. John Wiley & Sons, Inc., USA (2001)

    Book  Google Scholar 

  4. Bierman, G.: Vector Neural Network Signal Integration for Radar Application. Signal and Data Processing of Small Targets 2235, 290–302 (2001)

    Google Scholar 

  5. Shams, S.: Neural Network Optimization for Multi-Target Multi-Sensor Passive Tracking. Proc. IEEE 84(10), 1442–1457 (1996)

    Article  Google Scholar 

  6. Haykın, S.: Neural networks. Macmillan, New York (1994)

    MATH  Google Scholar 

  7. Li, X.R., Jilkov, W.P.: Survey of Maneuvering Target Tracking-Part I: Dynamic Models. IEEE Transactions on Aerospace and Electronic Systems 39(4), 1333–1364 (2003)

    Article  Google Scholar 

  8. Li, N., Li, X.R.: Target Perceivability and its Applications. IEEE Transactions on Signal Processing 49(11), 2588–2604 (2001)

    Article  Google Scholar 

  9. Wang, X., Challa, S., Evans, R., Li, X.R.: Minimal Sub-Model-Set Algorithm for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems 39(4) (2003)

    Google Scholar 

  10. Chen, H., Kirubarajan, T., Bar-Shalom, Y., Pattipati, K.R.: An MDL Approach for Multiple Low Observable Track Initiation. IEEE Trans. Aerospace and Electronic Systems 39(3), 862–882 (2003)

    Article  Google Scholar 

  11. Tartakovsky, A.G., Li, X.R., Yaralov, G.: Sequential Detection of Targets in Multichannel Systems. IEEE Transactions on Information Theory 49(2), 425–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brookner, E.: Tracking and Kalman Made Easy, pp. 60–62. John Wiley & Sons, Chichester (1998)

    Book  Google Scholar 

  13. Mahafza, B.R.: Radar Systems Analysis and Design Using Matlab. Chapman & Hall/CRC, USA (2000)

    Book  MATH  Google Scholar 

  14. Civil Aviation Safety Authority (CASA), Civil Aircraft Register, http://www.casa.gov.au/casadata/register/seven.htm

  15. Li, N., Li, X.R.: Tracker Design based on Target Perceivability. IEEE Transactions on Aerospace and Electronic Systems 37(1), 214–225 (2001)

    Article  Google Scholar 

  16. Çiviciog̃lu, P., Alçı, M.: Impulsive Noise Suppression from Highly Distorted Images with Triangular Interpolants. AEU International Journal of Electronics and Communications 58(5), 311–318 (2004)

    Article  Google Scholar 

  17. Çiviciog̃lu, P., Alçı, M.: Edge Detection of Highly Distorted Images Suffering from Impulsive Noise. AEU International Journal of Electronics and Communications 58(6), 413–419 (2004)

    Article  Google Scholar 

  18. Çiviciog̃lu, P., Alçı, M., Beşdok, E.: Using an Exact Radial Basis Function Artificial Neural Network for Impulsive Noise Suppression from Highly Distorted Image Databases. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 383–391. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. MathWorks, Neural Networks Toolbox, MATLAB v7.00, Function Reference, New York, The MathWorks, Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Çivicioğlu, P. (2006). Tracking Aircrafts by Using Impulse Exclusive Filter with RBF Neural Networks. In: Savacı, F.A. (eds) Artificial Intelligence and Neural Networks. TAINN 2005. Lecture Notes in Computer Science(), vol 3949. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11803089_8

Download citation

  • DOI: https://doi.org/10.1007/11803089_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36713-0

  • Online ISBN: 978-3-540-36861-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics