
A Software Component Model and Its
Preliminary Formalisation

Kung-Kiu Lau1, Mario Ornaghi2, and Zheng Wang1

1 School of Computer Science, the University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, zw}@cs.man.ac.uk

2 Dipartimento di Scienze dell’Informazione,
Universita’ degli studi di Milano

Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. A software component model should define what components are, and
how they can be composed. That is, it should define a theory of components
and their composition. Current software component models tend to use objects
or port-connector type architectural units as components, with method calls and
port-to-port connections as composition mechanisms. However, these models do
not provide a proper composition theory, in particular for key underlying concepts
such as encapsulation and compositionality. In this paper, we outline our notion
of these concepts, and give a preliminary formalisation of a software component
model that embodies these concepts.

1 Introduction

The context of this work is Component-based Software Engineering, rather than
Component-based Systems. In the latter, the focus is on system properties, and
components are typically state machines. Key concerns are issues related to communi-
cation, concurrency, processes, protocols, etc. Properties of interest are temporal, non-
functional properties such as deadlock-freedom, safety, liveness, etc. In the former, the
focus is on software components and middleware for composing them. Usually a soft-
ware component model, e.g. Enterprise JavaBeans (EJB) [21], provides the underlying
framework.

A software component model should define (i) what components are, i.e. their syntax
and semantics; and (ii) how to compose components, i.e. the semantics of their composi-
tion. Current component models tend to use objects or port-connector type architectural
units as components, with method calls and port-to-port connections as composition
mechanisms. However, these models do not define a proper theory for composition.

We believe that encapsulation and compositionality are key concepts for such a the-
ory. In this paper, we explain these notions, and their role in a composition theory.
Using these concepts, we present a software component model, together with a prelim-
inary formalisation.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 1–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 K.-K. Lau, M. Ornaghi, and Z. Wang

2 Current Component Models

Currently, so-called component models, e.g. EJB and CCM (CORBA Component Mo-
del) [24], do not follow a standard terminology or semantics. There are different def-
initions of what a component is [6], and most of these are not set in the context of a
component model. In particular, they do not define composition properly.

For example, a widely used definition of components is the following, due to
Szyperski [28]:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

A different definition is the following by Meyer [20]:

“A component is a software element (modular unit) satisfying the following
conditions:
1. It can be used by other software elements, its ‘clients’.
2. It possesses an official usage description, which is sufficient for a client
author to use it.
3. It is not tied to any fixed set of clients.”

Both these definitions do not mention a component model, in particular how composi-
tion is defined.

The following definition given in Heineman and Councill [12] mentions a component
model:

“A [component is a] software element that conforms to a component model and
can be independently deployed and composed without modification according
to a composition standard.”

but it does not define one.
Nevertheless, there is a commonly accepted abstract view of what a component

is, viz. a software unit that contains (i) code for performing services, and (ii) an in-
terface for accessing these services (Fig. 1(a)). To provide its services, a component

Name
Interface

Code
provided services
required services

(a) (b)

Fig. 1. A software component

may require some services. So a component is often depicted as in Fig. 1(b), e.g. in
CCM and UML2.0 [23].

In current software component models, components are typically objects as in object-
oriented languages, and port-connector type architectural units, with method calls and
ADL (architecture description languages [26]) connectors as composition mechanisms
respectively.

A complete survey of these models is beyond the scope of this paper. It can be found
in [17].

A Software Component Model and Its Preliminary Formalisation 3

3 Our Component Model

In our component model, components encapsulate computation (and data),1 and com-
position operators encapsulate control. Our components are constructed from (i) com-
putation units and (ii) connectors. A computation unit performs computation within
itself, and does not invoke computation in another unit. Connectors are used to build
components from computation units, and also as composition operators to compose
components into composite components.

3.1 Exogenous Connectors

Our connectors are exogenous connectors [16]. The distinguishing characteristic of ex-
ogenous connectors is that they encapsulate control. In traditional ADLs, components

C
A

B
D

E

(a) Components and connectors (b) Control flow

Fig. 2. Traditional ADLs

are supposed to represent computation, and connectors interaction between components
[19] (Fig. 2 (a)). Actually, however, components represent computation as well as con-
trol, since control originates in components, and is passed on by connectors to other
components. This is illustrated by Fig. 2 (b), where the origin of control is denoted by
a dot in a component, and the flow of control is denoted by arrows emanating from the
dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled,
albeit only indirectly via their ports.

In general, component connection schemes in current component models (including
ADLs) use message passing, and fall into two main categories: (i) connection by di-
rect message passing; and (ii) connection by indirect message passing. Direct message

A

b();

C

B

a();
B.a();
C.b(); C.b();

D

c();

B.a();
notify();

notify();
C.b();

K2

K1
A

a();

b();

B

C
notify();
C.b();

K1.notify();
K2.notify();

K3.notify();
c();

DK3

component
connector

(a) Direct message passing (b) Indirect message passing

Fig. 3. Connection by message passing

passing corresponds to direct method calls, as exemplified by objects calling methods
in other objects (Fig. 3 (a)), using method or event delegation, or remote procedure
call (RPC). Software component models that adopt direct message passing schemes as

1 For lack of space, we will not discuss data in this paper.

4 K.-K. Lau, M. Ornaghi, and Z. Wang

composition operators are EJB, CCM, COM [5], UML2.0 [23] and KobrA [3]. In these
models, there is no explicit code for connectors, since messages are ‘hard-wired’ into
the components, and so connectors are not separate entities.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors, as
exemplified by ADLs. Here, connectors are separate entities that are defined explic-
itly. Typically they are glue code or scripts that pass messages between components
indirectly. To connect a component to another component we use a connector that
when notified by the former invokes a method in the latter (Fig. 3 (b)). Besides ADLs,
other software component models that adopt indirect message passing schemes are Jav-
aBeans [27], Koala [30], SOFA [25], PECOS [22], PIN [14] and Fractal [8].

In connection schemes by message passing, direct or indirect, control originates in
and flows from components, as in Fig. 2 (b). This is clearly the case in both Fig. 3 (a)
and (b).

A categorical semantics of connectors is proposed in [9], where coordination is mod-
elled through signature morphisms. There is a clear separation between computation,
occurring in components, and coordination, performed by connectors. However, shared
actions may propagate control from one component to others.

By contrast, in exogenous connection, control originates in and flows from connec-
tors, leaving components to encapsulate only computation. This is illustrated by Fig. 4.

a();
b();

A
A.a();
B.c(); c();

B

d();

C

f();
e();
D

A.b();
C.d(); C.d();

D.e();

K1

K2 K3 a();
b();

A
c();

B

d();

C

f();
e();
D

K1

K2 K3

(a) Example (b) Control flow

Fig. 4. Connection by exogenous connectors

In Fig. 4 (a), components do not call methods in other components. Instead, all method
calls are initiated and coordinated by exogenous connectors. The latter’s distinguishing
feature of control encapsulation is clearly illustrated by Fig. 4 (b), in clear contrast to
Fig. 2 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and co-
ordinate control (and data). With exogenous connection, components are truly indepen-
dent and decoupled.

The concept of exogenous connection entails a type hierarchy of exogenous con-
nectors. Because they encapsulate all the control in a system, such connectors have to
connect to one another (as well as components) in order to build up a complete control
structure for the system. For this to be possible, there must be a type hierarchy for these
connectors. Therefore such a hierarchy must be defined for any component model that
is based on exogenous connection.

3.2 Components

Our view of a component is that it is not simply a part of the whole system. Rather
it is something very different from traditional software units such as code fragments,

A Software Component Model and Its Preliminary Formalisation 5

functions, procedures, subroutines, modules, classes/objects, programs, packages, etc,
and equally different from more modern units like DLLs and services.

We define a component as follows:

Definition 1. A software component is a software unit with the following defining char-
acteristics: (i) encapsulation and (ii) compositionality.

A component should encapsulate both data and computation. A component C encapsu-
lates data by making its data private. C encapsulates computation by making sure that
its computation happens entirely within itself.

An object can encapsulate data, but it does not encapsulate computation, since ob-
jects can call methods in other objects (Fig. 5(a)).

Object A Object B

m2(...)B.m2(...)
}

m1(...){
... m2 m2

RPC
(a) (b)

Fig. 5. Objects and architectural units

Port-connector type components, as in e.g. ADLs, UML2.0 and Koala, can encapsu-
late data. However, they usually do not encapsulate computation, since components can
call methods in other components by remote procedure call (RPC), albeit only indirectly
via connectors (and ports) (Fig. 5(b)).

Components should be compositional, i.e. the composition of two components C1
and C2 should yield another component C3, which in turn should also have the defining
characteristics of encapsulation and compositionality. Thus compositionality implies
that composition preserves or propagates encapsulation.2

Classes and objects are not compositional. They can only be ‘composed’ by method
calls, and such a ‘composition’ does not yield another class or object. Indeed, method
calls break encapsulation. Port-connector type components can be composed, but they
are not compositional if they do not have (computation) encapsulation.

Encapsulation entails that access to components must be provided by interfaces.
Classes and objects do not have interfaces. Access to (the methods of) objects, if per-
mitted, is direct, not via interfaces. So-called ‘interfaces’ in object-oriented languages
like Java are themselves classes or objects, so are not interfaces to components. Port-
connector type components use their ports as their interfaces.

Our components are constructed from computation units and exogenous connectors.
A computation unit performs just computation within itself and does not invoke compu-
tation in another unit. It can be thought of as a class or object with methods, except that
these methods do not call methods in other units. Thus it encapsulates computation.

Exogenous connectors encapsulate control, as we have seen in the previous section.
The type hierarchy of these connectors in our component model is as follows. At the

2 Compositionality in terms of other (non-functional) properties of sub-components is an open
issue, which we do not address here.

6 K.-K. Lau, M. Ornaghi, and Z. Wang

lowest level, level 1, because components are not allowed to call methods in other com-
ponents, we need an exogenous invocation connector. This is a unary operator that
takes a computation unit, invokes one of its methods, and receives the result of the in-
vocation. At the next level of the type hierarchy, to structure the control and data flow
in a set of components or a system, we need other connectors for sequencing exoge-
nous method calls to different components. So at level 2, we need n-ary connectors for
connecting invocation connectors, and at level 3, we need n-ary connectors for connect-
ing these connectors, and so on. In other words, we need a hierarchy of connectors of
different arities and types. We have defined and implemented such a hierarchy in [16].
Apart from invocation connectors at level 1, our hierarchy includes pipe connectors,
for sequencing, and selector connectors, for branching, at levels n ≥ 2. These con-
nectors are called composition connectors for the obvious reason. Level-1 connectors
are invocation connectors, and level-2 composition connectors connect only invocation
connectors, but composition connectors at higher levels are polymorphic since they can
connect different kinds of connectors at different levels (and with different arities).

We distinguish between (i) atomic components and (ii) composite components.

Definition 2. An atomic component C is a pair 〈i, u〉 where u is a computation unit,
and i is an invocation connector that invokes u’s methods. i provides an interface to the
component C.

A composite component CC is a tuple 〈k, C1, C2, . . . Cj〉, for some j, where k is a
j-ary connector at level n ≥ 2, and each Ci, i = 1, . . . , j, is either an atomic component
or a composite component. k is called a composition connector. It provides an interface
to the component CC.

Invocation
connector

Computation
unit

IU

U

IA

A

Composition
connector

...
C1 C2

K

IB

B

CJ

IJ

J

(a) An atomic component (b) A composite component

Fig. 6. Atomic and composite components

IU

U

Encapsulation

IA

A ...
C1 C2

K

IB

B

CJ

IJ

J

IA

A ...
C1 C2

K

IB

B

CJ

IJ

J

CompositionalityEncapsulation

(a) An atomic component (b) A composite component

Fig. 7. Encapsulation and compositionality

Figure 6 illustrates atomic and composite components. Clearly, an atomic compo-
nent encapsulates computation, since a computation unit does so, and an invocation
connector invokes only methods in the unit (Fig 7(a)). It is easy to see that a composite
component also encapsulates computation (Fig 7(b)).

A Software Component Model and Its Preliminary Formalisation 7

3.3 Composition Operators

To construct systems or composite components, we need composition operators that
preserve encapsulation and compositionality. Such composition operators should work
only on interfaces, in view of encapsulation.

Glue code is certainly not suitable as composition operators. Neither are object
method calls or ADL connectors, as used in current component models. Indeed, these
models do not have proper composition operators, in our view, since they do not have
the concepts of encapsulation and compositionality.

As in Definition 2, we use exogenous connectors at level n ≥ 2 as composition
operators. These operators are compositional and therefor preserve and propagate en-
capsulation. As shown in Fig 7(b), a composite component has encapsulation, as a result
of encapsulation in its constituent components. Furthermore, the composite component
is also compositional. Thus, any component, be it atomic or composite, has a top-most
connector that provides an interface, and it can be composed with any other component
using a suitable composition operator.

This self-similarity of a composite component is a direct consequence of component
encapsulation and compositionality, and provides the basis for a compositional way of
constructing systems from components. Fig. 8(b) illustrates self-similarity of a com-

A

B
D

E

C
F

G
D

ID

E

IE

B

IB

A

IA

C

IC

F

IF IG

G

(a) Acme (b) Exogenous connection

Fig. 8. Self-similarity of a composite component

posite component in a system composed from atomic and composite components. Each
dotted box indicates a composite component. Note in particular that the composite at
the top level is the entire system itself. Most importantly, every composite component
is similar to all its sub-components.

The system in Fig. 8(b) corresponds to the Acme [11] architecture in Fig. 8(a). By
comparison, in the Acme system, the composites are different from those in Fig. 8(b).
For instance, (D,E) is a composite in (b) but not in (a). Also, in (a) the top-level com-
posite is not similar to the composite (B,D,E) at the next level down. The latter has an
interface, but the former does not.

In general, self-similarity provides a compositional approach to system construction,
and this is an advance over hierarchical approaches such as ADLs which are not com-
positional, strictly speaking.

3.4 The Bank Example

Having defined our component model, we illustrate its use in the construction of a
simple bank system. The bank system has just one ATM that serves two banks (Bank1
and Bank2) as shown in Fig. 9.

8 K.-K. Lau, M. Ornaghi, and Z. Wang

The ATM obtains client details including card number, PIN, and requested ser-
vices, etc., and locates the bank that the client account belongs to. It then passes client
details to the client’s bank, which then provides the requested services of withdrawal,
deposit, etc.

To construct the bank system, first, two Bank components, Bank1 and Bank2, are as-
sembled by a Selector connector into a BankComposite. Then BankComposite is com-
posed with an ATM component by a Pipe connector into the bank system.

ATM

IA

Pipe

Bank2

IB2IB1

Bank1

BankComposite

Selector

Loop

Fig. 9. A simple bank system

All the components in Fig. 9 are well encapsulated. Every atomic component is made
up of an invocation connector and a computation unit. The computation unit implements
methods that the component could offer, and the invocation connector provides func-
tionalities to invoke those methods of the computation unit; thus it provides the interface
to the component. For example, the ATM component is made up of a computation unit
ATM and an invocation connector IA. The ATM component encapsulates both data and
functions, by defining its data as private and computing its functions entirely within
itself. IA invokes methods of ATM and thus serves as its interface.

All the components in Fig. 9 are compositional. The composite component Bank-
Composite is itself a component, with the composition connector Selector as its inter-
face. BankComposite also has encapsulation: it encapsulates data and functions of its
constituent components, Bank1 and Bank2.

Moreover, the composite component BankComposite in Fig. 9 is self-similar. Bank-
Composite has a top-level connector as an interface, and so have its sub-components
Bank1 and Bank2.

Finally, in this example, we built the bank system with a loop connector at the outer-
most level, which iterates and waits for client requests.

4 A Preliminary Formalisation

So far we have defined our component model informally. In this section we present a
preliminary formalisation of our model. The formalisation serves as a useful check on
the soundness, in the sense of good judgement, of the underlying ideas.

We will assume that our component model provides the basis for a Component-based
Software Design System, which we will call DS for convenience. DS should support all
the phases of the component life-cycle [18], i.e.:

A Software Component Model and Its Preliminary Formalisation 9

(i) Design Phase. A system or a new component C is designed from the connectors,
the computation units, and/or existing components, in a repository. If C is a new
component, it is added to the repository.

(ii) Deployment Phase. Deployment prepares a system or a component C for execution,
i.e. turns it into a binary bC and establishes the way of loading and instantiating it
when it is launched.

(iii) Run-time Phase. A binary bC is launched by loading and instantiating it into a
running instance, which provides the services offered by C.

Deployment-phase compositionality should be supported by suitable deployment
tools and should follow from design-phase compositionality. For this, a DS should be
provided with a composition and run-time infrastructure, implementing deployment-
phase composition according to the design-phase semantics of connectors.

Here we outline a first abstract meta-model for the design phase, and discuss func-
tional compositionality and encapsulation. The meta-model is formalised in many-
sorted first-order logic with identity. In the explanation we will introduce the signature
incrementally and we will explain the intended meaning informally. Axioms are given
in the appendix. The purpose is to devise and establish the basic requirements to be
satisfied by DS and the design-phase semantics of connectors.

4.1 Components and Their Interfaces

DS should provide a design environment for components with the characteristics of
compositionality and encapsulation, as discussed in Section 3.2. Component interfaces
play a key role, for two main reasons:

(i) They are the counterpart of encapsulation, i.e., they represent what is made public,
while encapsulation represents what is hidden.

(ii) Compositionality requires that the services of a component are defined in terms of
those of its sub-components.

To represent components and their interfaces in our general meta-model, we assume
that DS has a signature including the following sorts and declarations (Decls):

Sorts: Request, Result, ReqType, ResType, OpType, Comp
Decls: >> : ReqType × ResType → OpType

:: : Comp × OpType
∈ : Request × ReqType | Result × ResType

Request is the sort of possible requests, and Result is that of possible results.
ReqType is the sort of request types, and ResType is that of the result types. By the
overloaded membership relation ∈, each request type Q : ReqType is interpreted as a
set of requests, and each result type R : ReqType as a set of results. Comp is the sort
of possible components. OpType is introduced to represent component interfaces. It is
freely generated by the constructor >>, i.e., its elements are of the form Q >> R, with
Q : ReqType and R : ResType. Interfaces are represented by the interface relation:

C :: Q >> R

10 K.-K. Lau, M. Ornaghi, and Z. Wang

It means that the component C accepts requests q ∈ Q and yields results r ∈ R. We say
that C supports the operation type Q >> R. The interface of C is the set of operation
types it supports.

Requests and result types are disjoint. Thus a component cannot answer a request by
another request to another component, that is, computation encapsulation is enforced.
This will be further discussed in Section 4.3. Request, Result, ReqType, and ResType
are open, i.e., they depend on the DS at hand.

Example 1. In a programming language L, an operation template such as, e.g., sum(x :
int, y : int) : int can be represented in our formalism as the operation type

sum(x : int, y : int) >> int

where the request type sum(x : int, y : int) represents all the call-instances
sum(m, n) and the result type is the data type int. That is, Request is the set of all
possible call-instances of L, Result is the set of all the elements of the data types of L,
ReqType is the set of call-templates, ResType is the set of data types of the language,
and an operation type m(x1 : T1, . . . , xn : Tn) >> T corresponds to an operation
template m(x1 : T1, . . . , xn : Tn) : T .

Request and result types could also include semantic information, allowing us to use
them as specifications and to deal with the correctness issue. Moreover, it may be use-
ful to allow structured information, as illustrated by the following example.

Example 2. We introduce atomic request and result types by templates. A template is
of the form s(x1 : T1, . . . , xn : Tn), where s is the template symbol, n ≥ 0, and
x1 : T1, . . . , xn : Tn are its parameters. We distinguish between request and result
templates. In general, request templates correspond to procedure calls, such as read(),
write(x : string), etc. Result templates are semantic properties, such as odd(x : int),
x = a + b, etc. Semantic properties can also be used in requests, as pre-conditions. A
request is an instance of a request template, e.g. read, write(4), odd(3), and so on. A
result is an instance of a result template, e.g. odd(5), done, and so on.

An example of an operation type using templates is:

sum(x : int, y : int) >> z = x + y

The meaning is that for every request sum(m, n) we get a result z = m + n.
It may be useful to introduce structured templates, as shown by the following

example.
read(F : text) >> x : int|notAnInteger

expresses the fact that reading from F yields an integer x, unless the characters read do
not represent an integer. The use of structured templates is also useful in correspondence
with connectors, as will be explained in Section 4.4.

4.2 Composition Operators

Composite components are built by means of composition connectors, starting from
atomic components. The latter are built from computation units, by means of invocation

A Software Component Model and Its Preliminary Formalisation 11

connectors. To model this situation, we enrich the signature introduced in the previous
section by adding:

Sorts: Unit, InvConn, CompConn, List(X)
Decls: The usual operations and relations on lists

• : InvConn × Unit → Comp
• : CompConn × List(Comp) → Comp
ctype : CompConn × List(OpType) × OpType

Unit is the sort of units, InvConn that of invocation connectors, and CompConn
that of composition connectors. Parametric lists List(X) are defined as usual, and a
list will be represented by the notation [x1, . . . , xn]. The overloaded operator • is the
composition operator.

Components are defined by composition terms. A composition term T indicates how
a component is built by connectors starting from units or components already defined
and stored in the repository of the DS. Composition terms are generated by the com-
position •: i • u denotes the application of an invocation connector i to a unit u, and
k • [T1, . . . , Tn] denotes the application of a composition operator k to the sub-terms
(denoting sub-components) T1, . . . , Tn.

Composition connectors are typed by ctype. We will write k : [Op1, . . . , Opn] →
Op as a different notation for ctype(k, [Op1, . . . , Opn], Op). If k has a composition
type Op1, . . . , Opn → Op, then k • [T1, . . . , Tn] has operation type Op whenever it is
applied to T1 :: Op1, . . ., Tn :: Opn.

Not all the composition terms represent components. Components, together with their
interface relation ::, are defined by inductive composition rules of the following form:

r(i, u)
i • u :: Op

T1 :: Op1 . . . Tn :: Opn
r(k)

k • [T1, . . . , Tn] :: Op

For the invocation connector rule r(i, u), the operation type Op is determined by both
i and u. For the composition connector rule r(k), Op is determined by the composition
type Op1, . . . , Opn → Op of k. Connectors and the related composition rules are, in
general, domain specific and depend on the DS. The components of a DS are defined as
follows:

Definition 3. A composition term T is a component of a DS with operation type Op iff
T :: Op can be derived by the composition rules of the DS.

New composite components can be introduced in the repository of the DS by defini-
tions of the form C := T , where C is a new constant symbol and T is a composition
term. As usual, the definition C := T expands the current signature by the new con-
stant C : Conn and introduces the definition axiom C = T . The interface relation of a
component C introduced by a definition C := T is that of T :

if C := T, then C :: Q >> R iff T :: Q >> R (1)

12 K.-K. Lau, M. Ornaghi, and Z. Wang

Typed composition connectors have a compositional semantics given by:

– the composition rules of the DS;
– the execution rules explained in Section 4.3, which give the run-time semantics of

a component in terms of that of its sub-components.

We distinguish between designing a DS and using it. Designing a DS means design-
ing its units and, more importantly, the rules of its connectors, according to the general
assumptions of the meta-model. Using a DS to design systems and components means
using its units and its composition rules. Although, in general, connectors and their
composition rules are domain specific, there are general-purpose connectors. Some of
them will be shown in Section 4.4. In the following example we show the general-
purpose connector pipe.

Example 3. A pipe connector pipe : [Q1 >> R1, Q2 >> R2] → Q1 >> R2 assumes
a map p : Result → Request, to pipe the results r1 ∈ R1 of component C1 :: Q1 >>
R1 into requests q2 ∈ Q2 for C2 :: Q2 >> R2 (details in Example 4). The composition
rule is:

C1 :: Q1 >> R1 C2 :: Q2 >> R2
r(pipe)

pipe • [C1, C2] :: Q1 >> R2
.

4.3 A Run-Time Semantics

As mentioned before, to run a component represented by a composition term T , we need
to compile the units and connectors of T into binaries, to deploy binaries according to T ,
to load them into the memory and to launch them. This process requires an appropriate
infrastructure, that guarantees that the implementation agrees with the intended run-
time semantics of T . In this section we define the intended run-time semantics in an
abstract, i.e. implementation independent, way. To this end, we enrich our signature as
follows:

Sorts: D, Instance, Step
Decl: halt, error : D

�→ : D × Request × D × Result → Step;
i : Comp × D → Instance;
exec : Comp × Step

Instance is the sort of run-time instances, and D is the sort of data that can be con-
tained in the memory of instances. We do not model data and their structure in this
paper. In the examples we will assume that D is closed with respect to the pairing
operation (i.e., if d1, d2 ∈ D, then 〈d1, d2〉 ∈ D). By i(C, d) we represent a running in-
stance of a component C with current memory content d ∈ D. The relation data(C, d)
indicates which data are admitted for a component C.

Step is the sort of execution steps. It is freely generated by �→, i.e., its elements are
uniquely represented by terms of the form �→ (d, q, d′, r). A term �→ (d, q, d′, r) is also
written [d, q] �→ [d′, r]. It indicates an execution step from the current memory content
d and request q, into the new memory content d′ and result r.

A Software Component Model and Its Preliminary Formalisation 13

Instances can execute requests. Let i(C, d) be a run-time instance with operation type
C :: QT >> RT , and let q ∈ Q be a request. The execution relation of a component C

exec(C, [d, q] �→ [d′, r])

indicates that when the instance i(C, d) executes a request q, it performs the execution
step [d, q] �→ [d′, r]. To treat regular halting and run-time errors, we consider halt and
error as particular memory contents:

exec(C, [d, q] �→ [halt, r])
exec(C, [d, q] �→ [error, r])

We define the run-time semantics of an atomic component i • u by a map M(i, u) :
D × Request → D × Result as follows:

exec(i • u, [d, q] �→ [d′, r]) ↔ M(i, u)(d, q) = 〈d′, r〉

We define the run-time semantics of a non-atomic component k • [T1, . . . , Tn] by a
map M(k) : Stepn → Step as follows:

exec(k • [T1, . . . , Tn], S) ↔ ∧n
j=1exec(Tj , Sj)∧

S = M(k)(S1, . . . , Sn)

Invocation connectors provide encapsulation for atomic components through inter-
faces. The unit u in an atomic component i • u cannot directly call any other unit or
component. It can only provide results, i.e., the only way of requiring a service from
outside (if needed) is to pass the request as a result through the invocation connec-
tor. This “request-result” is then managed by the other connectors, that is, control is
performed by connectors. The semantics of composition connectors is compositional.
Indeed: (a) it preserves encapsulation through interfaces and (b) M(k) indicates how
the resulting step S is obtained from the computation steps Sj of the sub-components, in
a way that does not depend on the specific features of the sub-components, but only on
their operation types Op1, . . . , Opn and on the connector k : [Op1, . . . , Opn] → Op.

An abstract compositional run-time semantics is useful for two main reasons. The
first one is that a compositional semantics supports “predictability”, since the result of
a composition is also a component and its services are defined in terms of those of the
sub-components. The second reason is that it abstracts from the implementation details,
related to the compilation of composition terms into runnable binaries. The correct-
ness of different implementations with respect to the abstract run-time semantics fixed
for composition terms supports interoperability. Thus, designing the abstract run-time
semantics of connectors and units means defining the maps M(i, u) and M(k) accord-
ing to the general requirements explained above. Implementing it means implementing
a run-time infrastructure that is correct with respect to the abstract semantics.

The correctness of an implementation is with respect to the abstract execution se-
mantics. With the step [d, q] �→ [d′, r] we associate the observable step q �→ r. An
implementation is correct if the observable steps obtained by running it coincide with
those defined by the abstract run-time semantics. That is, we abstract from the internal
representation of data, and we are only interested in observable requests and results.

14 K.-K. Lau, M. Ornaghi, and Z. Wang

Example 4. Here we show the run-time semantics of the pipe rule of Example 3.

exec(pipe • [C1, C2], [〈d1, d2〉, q1], [〈d′1, d′2〉, r2]) ↔ exec(C1, [d1, q1] �→ [d′1, r1])∧
exec(C2, [d2, q2] �→ [d′2, r2])∧
q2 = p(r1)

In this rule, results r1 ∈ R1 are piped into requests p(r1) ∈ Q2, the sub-component
C1 has data d1 and the sub-component C2 has separate data d2, and the whole com-
ponent has data 〈d1, d2〉 (i.e., data(pipe • [C1, C2], d) holds iff d = 〈d1, d2〉, with
data(C1, d1) and data(C2, d2)). We may have different kinds of pipe, e.g., the piping
mechanism could also depend on the request q1.

4.4 The Bank Example

In this section, we illustrate our general model. Firstly we outline part of a possible DS,
and then we apply it to the bank example (Section 3.4).

The DS defines interfaces through structured templates, as in Example 2. Here we
consider the structuring operators |, sel and ∗, defined as follows.

– A request/result of a type A1| · · · |An is a pair 〈k, a〉, with 1 ≤ k ≤ n and a ∈ Ak.
– A request/result of type sel(p ∈ S : A(p)) is a pair 〈v, a〉, where S is a finite set of

values, v ∈ S and a ∈ A(v).
– A request/result of type A∗ is a sequence [a1, . . . , an] such that ai ∈ A.

The composition rules for the connectors related to the above structures are:

C :: Q >> R
r(loop)

loop • [C] :: Q∗ >> R∗

C1 :: Q1 >> R1 . . . Cn :: Qn >> Rn

r(case)
case • [C1, . . . , Cn] :: Q1| · · · |Qn >> R

C(v1) :: Q(v1) >> R . . . C(vn) :: Q(vn) >> R
r(sel)

sel • [C(v1), . . . , C(vn)] :: sel(p ∈ {v1, . . . , vn} : Q(p) >> R)

The execution semantics is:

exec(case • [C1, . . . , Cn], [d, 〈j, q〉] �→ [d′, r]) ↔ exec(Cj, [dj , q] �→ [d′
j , r

′])∧
(∧k �=j d′

k = dk) ∧ r′ Rj ,R
�→ r

exec(sel • [C(v1), . . . , C(vm)], [d, 〈vj , q〉] �→ [d′, r]) ↔ exec(C(vj), [dj , q] �→ [d′
j , r])

∧(∧k �=j d′
k = dk)

exec(loop • C, [d, [q|q]] �→ [d′, [r|r]]) ↔ exec(C, [d, q] �→ [d1, q1])∧
exec(loop • C, [d1, q], [d′, r])

The case component has data(case • [C1, . . . , Cn], 〈d1, . . . , dn〉), with data(Cj , dj)
(similarly for the sel component). The connector case requires that there is a map

r′
Rj ,R�→ r from r′ ∈ Rj into r ∈ R, depending on the result types Rj and R. In

particular:

a
A,A|B�→ 〈1, a〉

b
B,A|B�→ 〈2, b〉

A Software Component Model and Its Preliminary Formalisation 15

The connector sel applies to n instances of a parametric component C(p) :: Q(p) >>
R and executes the one indicated by vj . The loop connector iterates C over a sequence
of requests. Besides these connectors, we also have the pipe connector explained above.

Now we sketch a possible construction of the bank system (Section 3.4) using the
DS partially outlined above.

In Fig. 9, the invocation connectors for the ATM and bank computation units encap-
sulate them into atomic components with the following operation types:

atmC := IA • ATM :: choose() >> (chosen(n, Acc, Op)|notOkP in)
b(n) := IBn • Bankn :: do(n, Acc, Op) >> amount(Acc, A)|refusedOp

Firstly, we informally explain the semantics of the atomic components.
In the operation type of atmC, choose() indicates that the user inputs a PIN and

an operation choice. If the PIN is not recognised, the result is notOkPin, otherwise it
is chosen(n, Acc, Op), indicating that the PIN corresponds to the account Acc of the
bank number n, and Op is the operation chosen.

In the operation type of b(n), do(n, Acc, Op) indicates that an operation Op has
been requested on the account Acc of bank n. The operation Op may be accepted or
refused, as indicated by the result type of amount(Acc, A)|refusedOp. If accepted, the
result amount(Acc, A) indicates that A is the amount of Acc after the operation. The
operation (when not refused) may update the current amount.

Now we compose the atomic components by connectors, to obtain our system. We
firstly build the banks composite of the two banks and sending a requested operation to
the target bank n, by means of a selector connector:

banks := sel • [b(1), b(2)] ::
sel(n ∈ {1, 2} : do(n, Acc, Op)) >> (amount(Acc, A)|refusedOp)

By a pipe, we build the component atmOp, performing a single ATM request and,
by a loop, the component system, looping on ATM requests, as follows.

atmOp := pipe • [atmC, case • [banks, noOperation]] ::
choice() >> (amount(Acc,A)|refusedOp)|notOkP in

system := loop • atmOp :: choice()∗ >> ((amount(Acc,A)|refusedOp)|notOkP in)∗

The internal connector case • [C, noOperation] is to be considered as a part of the
pipe connector, and the noOperation branch is not a sub-component. It maps re-
sults into results and is used to bypass C. In our example, the request type of case •
[banks, noOperation] is sel(n ∈ {1, 2} : do(n, Acc, Op))|notOkPin. If the re-
sult of atmC is 〈2, notOkPin〉, we pipe it into 〈2, notOkPin〉 itself, so that case
passes the result notOkPin to the noOperation branch. If the result of atmC is
〈1, chosen(n, Acc, Op)〉, we pipe it into 〈1, 〈n, do(n, Acc, Op)〉〉, so that the request
〈n, do(n, Acc, Op)〉 is passed to banks.

To illustrate the run-time semantics of connectors, we show the execution of a re-
quest. The whole system has the following data:

– a database atmdb, associating each valid PIN to a bank and an account number;
– databases dbi (with i = 1 or i = 2), containing the accounts of bank i.

16 K.-K. Lau, M. Ornaghi, and Z. Wang

The data-components association should be decided in the deployment phase. Since
here we abstract from it, data are triples d = 〈atmdb, db1, db2〉, where atmdb is used
by atmC, db1 by b(1), and db2 by b(2).

By the semantics of loop, the computation step corresponding to a sequence of re-
quests of length n has the form

[[d0, [choice(), choice(), . . . , choice()]] �→ [dn, [Res1, Res2, . . . , Resn]]]

where each [dn−1, choice()] �→ [dn, Resn] is performed by atmOp. We consider the
first step [d0, choice()] �→ [d1, Res1], and we assume that the the user inputs a correct
PIN and requires a withdrawal of £50, and that the (correct) PIN input is related to the
bank b(2) and the account number Acc = 2341. We assume that the total amount of the
account (stored in db2) is £5170.

By the semantics of the pipe connector, we have two sub-steps:

[d0, choice()] atmC�→ [d0, 〈1, chosen(2, 2341, withdraw(50))〉]

[d0, 〈1, 〈2, op(2, 2341, withdraw(50))〉〉] case•[banks,noOperation]�→ [d1, Res1]

where we indicate on the top of �→ the sub-component performing the step. The first
step corresponds to the semantics of the atomic component atmC informally explained
above, and its result 〈1, chosen(2, 2341, withdraw(50))〉 is piped into the request for
the second step. By the semantics of case, the second step is obtained from the sub-step:

[d0, 〈2, op(2, 2341, withdraw(50))〉] sel•[b(1),b(2)]�→ [d1, Res1]

By the semantics of sel, the latter is obtained from the step

[d0, op(2, 2341, withdraw(50))]
b(2)�→ [d1, 〈1, amount(2341, 5120)〉]

performed by the atomic component b(2), which updates the current amount of the
account 2341 stored in the database db2. By the semantics of case, the result Res1

is obtained by the mapping
R2,R�→ . Here R2 is amount(Acc, A)|refusedOp, and R is

(amount (Acc, A)|refusedOp)|notOkPin. Thus, the mapping is:

〈1, amount(2341, 5120))〉 R2,R�→ Res1 = 〈1, 〈1, amount(2341, 5120)〉〉

The result Res1 : (amount(Acc, A)|refusedOp)|notOkPin indicates that the pin is
okay, the operation has been performed successfully and the new amount is £5120.

5 Discussion

In our component model, exogenous connectors play a fundamental role, not only for
constructing atomic components but also for composing components into composites,
whilst providing interfaces to all these (atomic and composite) components. Indepen-
dently, exogenous connection has been defined as exogenous coordination in coordina-
tion languages for concurrent computation [2]. Also independently, in object-oriented

A Software Component Model and Its Preliminary Formalisation 17

programming, the courier patter [10] uses the idea of exogenous connection. There are
also similarities with Service Oriented Architectures [29], where business processes
accessing (independent) services can be specified by means of an orchestration lan-
guage. However, no current model relies on encapsulation requirements as strong as
ours. We believe that strong encapsulation is a key feature to obtain truly independent
and reusable components.

The preliminary formalisation of our component model provides a semantic frame-
work for our approach to component-based software development. Our model and for-
malisation highlight the basic ideas and fix the minimal requirements for a component
system based on exogenous connectors, whilst leaving completely open the choice of
the specific connectors and of the interface language. The possibility of designing con-
nectors and interfaces in our model is illustrated by the example of Section 4.4, which
outlines part of a possible DS. The example shows that an interface language tailored to
the structural properties of connectors allows us to link the meaning of data involved in
computation to the structure of components. In this way, the semantic framework of our
model should enable us to reason formally not only about the correctness of individual
atomic components, but also about the correctness of any composite component, and
therefore the correctness of any system built from components.

Consequently, two benefits should accrue, viz. predictable assembly of component-
based systems, and verified software built from pre-verified components. Predictable
assembly is the ultimate goal of Component-based Software Engineering, whilst veri-
fied software has remained a grand challenge for a long time [13]. We believe that our
component model can contribute to predictable assembly because it allows us to gen-
erate interfaces to any composite component (or system) we build, directly from the
interfaces of its constituent (sub)components.

By the same token, our model can contribute to the verified software challenge by
breaking the problem down into smaller sub-problems, and in particular by enabling
proof reuse, i.e. using proofs of sub-components directly in the proof of a composite
or system. To realise these benefits, we are implementing our component model in the
Spark [4] language, which has proof tools which can support verification of components.

Our formalisation (and model) is only preliminary at present however. Many issues
still need to be investigated, e.g. what kinds of connectors are useful in practice, con-
sidering the constructs introduced in other approaches, e.g. in web service orchestration
languages such as BPEL [1]. The problem is to establish whether particular connectors
are compositional and preserve strong encapsulation.

For instance, in the bank example, we have used a loop connector at the outer-most
level, simply because it is natural to use such a connector to handle continuous inputs
from clients. This connector, as defined here, is compositional because it iterates on a
finite sequence of requests. Ideally, however, it should allow an infinite stream of inputs,
but unfortunately such a loop connector is not compositional. Clearly whether a loop
terminates is usually only known at run-time. So whether it can ever be used as a com-
position connector at design time remains a moot point. Equally, a non-terminating loop
connector may be acceptable, even desirable, at the outer-most level. It would be inter-
esting to study the possibility of introducing infinite streams into our approach while
maintaining a notion of control encapsulation, by using general formal contexts, such
as FOCUS [7].

18 K.-K. Lau, M. Ornaghi, and Z. Wang

6 Conclusion

In this paper, we have presented a software component model and its preliminary for-
malisation. Encapsulation and compositionality are the key concepts that underlie our
model. In contrast, existing component models tend to use either objects or architectural
units as components, which are neither well encapsulated nor compositional.

Our component model is based on exogenous connectors. Using these connectors to
construct and compose components is the key to achieving encapsulation and composi-
tionality. Composite components constructed by exogenous connectors are self-similar,
which makes a compositional approach to system construction possible. In contrast to
existing software component models, our self-similar components are also encapsulated
and compositional.

Another benefit of exogenous connection is that components are loosely coupled,
since control is originated and encapsulated by connectors, unlike ADL connectors that
do not originate or encapsulate control. As a result, systems are modular and therefore
easier to maintain and re-configure.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services(BPEL4S) - Version 1.1. IBM, http://www-106.ibm.com/developerworks/
library/ws-bpel/, 2004.

2. F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and
C. Hankin, editors, LNCS 1061, pages 34–56. Springer-Verlag, 1996.

3. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wüst, and J. Zettel. Component-based Product Line Engineering with UML.
Addison-Wesley, 2001.

4. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, 2003.

5. D. Box. Essential COM. Addison-Wesley, 1998.
6. M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree, M. Stal, and

C. Szyperski. What characterizes a software component? Software – Concepts and Tools,
19(1):49–56, 1998.

7. M. Broy and K. Stølen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, 2001.

8. E. Bruneton, T. Coupaye, and M. Leclercq. An open component model and its support
in Java. In Proc. 7th Int. Symp. on Component-based Software Engineering, pages 7–22.
Springer -Verlag, 2004.

9. J.L. Fiadeiro, A.Lopes, and M.Wermelinger. A mathematical semantics for architectural
connectors. LNCS 2793, pages 178-221, 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The Courier pattern. Dr. Dobb’s Journal,
Feburary 1996.

11. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based
systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47–68. Cambridge University Press, 2000.

12. G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, 2001.

A Software Component Model and Its Preliminary Formalisation 19

13. IFIP TC2 working conference on Verified Software: Theories, Tools, Experiments, 10-13
October 2005, ETH Zürich, Switzerland. http://vstte.ethz.ch/.

14. J. Ivers, N. Sinha, and K.C Wallnau. A Basis for Composition Language CL. Technical
Report CMU/SEI-2002-TN-026, CMU SEI, 2002.

15. K.-K. Lau and M. Ornaghi. Specifying compositional units for correct program development
in computational logic. In M. Bruynooghe and K.-K. Lau, editor, Program Development
in Computational Logic, Lecture Notes in Computer Science 3049, pages 1–29. Springer-
Verlag, 2004.

16. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS
3489, pages 90–106, 2005.

17. K.-K. Lau and Z. Wang. A survey of software component models. Pre-print CSPP-
30, School of Computer Science, The University of Manchester, April 2005. http://
www.cs.man.ac.uk/cspreprints/PrePrints/cspp30.pdf.

18. K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st Euromi-
cro Conference, pages 88–95. IEEE Computer Society Press, 2005.

19. N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In
Proc. 22nd Int. Conf. on Software Engineering, pages 178–187. ACM Press, 2000.

20. B. Meyer. The grand challenge of trusted components. In Proc. ICSE 2003, pages 660–667.
IEEE, 2003.

21. Sun Microsystems. Enterprise Java Beans Specification, Version 3.0, 2005.
22. O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler, T. Genssler,

and R. van den Born. A component model for field devices. In Proc. 1st Int. IFIP/ACM
Working Conference on Component Deployment, pages 200–209. ACM Press, 2002.

23. OMG. UML 2.0 Superstructure Specification. http://www.omg.org/cgi-bin/
doc?ptc/2003-08-02.

24. OMG. CORBA Component Model, V3.0, 2002. http://www.omg.org/technology/
documents/formal/components.htm.

25. F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trading and
dynamic updating. In Proc. ICCDS98, pages 43–52. IEEE Press, 1998.

26. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

27. Sun Microsystems. JavaBeans Specification, 1997. http://java.sun.com/
products/javabeans/docs/spec.html.

28. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

29. E. Thomas. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

30. R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model
for consumer electronics software. IEEE Computer, pages 78–85, March 2000.

Appendix

We formalise our model as an open specification framework [15]. We distinguish be-
tween open and defined symbols. The meaning of the defined symbols is established by
the definition axioms, in terms of the open ones. The open symbols are to be axiomatised
when designing a specific DS based on exogenous connectors. The constraint axioms
represent proof obligations to be satisfied when axiomatising a DS. The axiomatisation
presented here contains the minimal requirements and has a loose semantics.

http://vstte.ethz.ch/
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp30.pdf
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp30.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/components.htm
http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/products/javabeans/docs/spec.html

20 K.-K. Lau, M. Ornaghi, and Z. Wang

The signature is the one explained in Section 4. We import the parametric abstract
data type List(X). The defined sorts are OpType, List(X), Comp, Instance, and
Step. They are freely generated from the open sorts, according to the following con-
structor axioms (see [15]):

OpType constructed by >>: ReqType × ResType → OpType;
Comp constructed by • : InvConn × Unit → Comp,

• : CompConn × List(Comp) → Comp;
Instance constructed by i : Comp × D → Instance;
Step constructed by �→: D × Request × D × Result → Step;

In Section 4.3 we have informally introduced the semantic function M. Here we
introduce it in the signature by the declaration

M : InvConn × Unit × Step | CompConn × List(Step) × Step

and we axiomatise exec by mutual recursion (axioms dax1,j), using the auxiliary
(overloaded) predicate exec : List(Comp) × List(Step). The other axioms intro-
duce auxiliary predicates used later, in the constraint axioms: dax2 extend the over-
loaded interface relation to sequences of components ([C1, . . . , Cn] :: [Op1, . . . , Opn]
indicates that Ci :: Opi); dax3,k introduce the relations domain, range and stype,
indicating the expected types of requests, data and results in computation steps; dax4,1
introduce total(C, Op), indicating that C :: Op computes a total input-output relation,
and the axiom dax4,2 extends total to lists of components. In the axioms we will use
the following typed variables: i : InvConn, k : CompConn, u : Unit, S : Step,
LC : List(Comp), LS : List(Step), LO : List(Op), Q : ReqType, R : ResType,
q : Request, r : Result, d : D, Op : OpType, and we will leave the most external
quantification understood.
Definition Axioms:

dax1,1 exec(i • u, S) ↔ M(i, u, S)
dax1,2 exec(k • LC, S) ↔ ∃LS(exec(LC,LS) ∧ M(k, LS, S))
dax1,3 exec([], []) ∧ (exec([C|LC], [S|LS]) ↔ exec(C,S) ∧ exec(LC, LS))
dax2 [] :: [] ∧ ([C|LC] :: [Op|LO] ↔ C :: Op ∧ LC :: LO)
dax3,1 domain(d, q, C, Q >> R) ↔ C :: Q >> R ∧ q ∈ Q ∧ data(C,d)
dax3,2 range(d, r, C, Q >> R) ↔ C :: Q >> R ∧ r ∈ R ∧ (data(C,d) ∨ d = halt)
dax3,3 stype([d, q] �→ [d′, r], C, Op) ↔ domain(d, q, C, Op) ∧ range(d′, r, C, Op)
dax3,4 stype([], [], [])∧

(stype([S|LS], [C|LC], [Op|LO]) ↔ stype(S,C, Op) ∧ stype(LS,LC, LO))
dax4,1 total(C, Op) ↔ C :: Op ∧

∀d, q(domain(d, q, C, Op) → ∃d′, r exec(C, [d, q] �→ [d′, r]))
dax4,2 total([], []) ∧ (total([C|LC], [Op|LO]) ↔ total(C,Op) ∧ total(LC, LO))

In the following, instead of ctype(k, LO, O) and stype(S, C, Op) we will use the
more intuitive notation k : LO → Op and S : (C :: OP). Now we give the constraint
axioms. By c1 we require that a composition term k • [T1, . . . , Tn] is a component with
operation type Op only if the subcomponents T1, . . . , Tn agree with the type of k. The
if part is left open and has to be fixed by the composition rules of the specific DS

A Software Component Model and Its Preliminary Formalisation 21

(see Definition 3). By c2,i we require that the semantic relation M conforms to the do-
main and range types of components. The other constraints allow us to prove Theorem
1, which states that each component terminates.

Constraints:

c1 (k • L) :: Op → ∃ LO(L :: LO ∧ k : LO → Op)
c2,1 (i • u) :: Op → ∀ S(M(i, u, S) → S : (i • u :: Op))
c2,2 (k • LC :: Op) ∧ LS : (LC :: LO) → ∀S(M(k,LS, S) → S : (k • LS :: Op))
c3,1 (i • u) :: Op → ∀ d, q(domain(d, q, i • u, Op) → ∃ d′, r M(i, u, [d, q] �→ [d′, r]))
c3,2 (k • LC :: Op) ∧ total(LC,LO) → ∀ d, q (domain(d, q, k • LC, Op)

→ ∃ d′, r(exec(k • LC, [d, q] �→ [d′, r])))

Theorem 1. The following sentences can be proved from the above axioms:
∀C, Op(C :: Op → total(C, Op))

It is worthwhile to remark that constraints are proof obligations when a specific DS
is axiomatised. In particular, c1 is a proof obligation for the composition rules, and
the other constraints are proof obligations for the relation M defining the run-time
semantics. We show how such proof obligations work by proving, as an example, that
the semantics for pipe(Q1 >> R1, Q2 >> R2) satisfies c3,2.

Let pipe • [C1, C2] be a generic pipe component, and [〈d1, d2〉, q1] be a generic
element of its domain. We have to prove that there is a step

exec(pipe • [C1, C2], [〈d1, d2〉, q1] �→ [〈d′1, d′2〉, r2])

By the assumption total([C1, C2] :: [Q1 >> R1, Q2 >> R2]) of c3,2, we get total(C1
:: Q1 >> R1) and total(C2 :: Q2 >> R2). By total(C1 :: Q1 >> R1), there is
[d′1, r1] such that exec(C1, [d1, q1] �→ [d′1, r1]). By the pipe operation we can build
q2 = p(r1), and we get [d2, q2] in the domain of C2. Finally, by total(C2 :: Q2 >>
R2), we can conclude that the required result [〈d′1, d′2〉, r2] exists. Thus, the semantics
of pipe is well defined in our model.

	Introduction
	Current Component Models
	Our Component Model
	Exogenous Connectors
	Components
	Composition Operators
	The Bank Example

	A Preliminary Formalisation
	Components and Their Interfaces
	Composition Operators
	A Run-Time Semantics
	The Bank Example

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

