Skip to main content

Robust Quantum Algorithms with ε-Biased Oracles

  • Conference paper
Computing and Combinatorics (COCOON 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4112))

Included in the following conference series:

Abstract

This paper considers the quantum query complexity of ε-biased oracles that return the correct value with probability only 1/2 + ε. In particular, we show a quantum algorithm to compute N-bit OR functions with \(O(\sqrt{N}/{\varepsilon})\) queries to ε-biased oracles. This improves the known upper bound of \(O(\sqrt{N}/{\varepsilon}^2)\) and matches the known lower bound; we answer the conjecture raised by the paper [1] affirmatively. We also show a quantum algorithm to cope with the situation in which we have no knowledge about the value of ε. This contrasts with the corresponding classical situation, where it is almost hopeless to achieve more than a constant success probability without knowing the value of ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Iwama, K., Raymond, R., Yamashita, S.: General bounds for quantum biased oracles. IPSJ Journal 46(10), 1234–1243 (2005)

    MathSciNet  Google Scholar 

  2. Shor, P.W.: An algorithm for quantum computation: discrete log and factoring. In: Proc. 35th Annual IEEE Symposium on Foudations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219 (1996)

    Google Scholar 

  4. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. In: Proc. 39th Annual IEEE Symposium on Foudations of Computer Science, pp. 352–361 (1998)

    Google Scholar 

  6. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. In: Proc. of the Workshop on Physics of Computation: PhysComp 1996, LANL preprint (1996), http://xxx.lanl.gov/archive/quant-ph/9605034

  7. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with Noisy Information. SIAM J. Comput. 23(5), 1001–1018 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust polynomials and quantum algorithms. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 593–604. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Adcock, M., Cleve, R.: A quantum Goldreich-Levin Theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Quantum Computation & Information. AMS Contemporary Mathematics Series Millenium Volume, vol. 305, pp. 53–74 (2002)

    Google Scholar 

  12. Suzuki, T., Yamashita, S., Nakanishi, M., Watanabe, K.: Robust quantum algorithms with ε-biased oracles. Technical Report LANL preprint (2006), http://xxx.lanl.gov/archive/quant-ph/0605077

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, T., Yamashita, S., Nakanishi, M., Watanabe, K. (2006). Robust Quantum Algorithms with ε-Biased Oracles. In: Chen, D.Z., Lee, D.T. (eds) Computing and Combinatorics. COCOON 2006. Lecture Notes in Computer Science, vol 4112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11809678_14

Download citation

  • DOI: https://doi.org/10.1007/11809678_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36925-7

  • Online ISBN: 978-3-540-36926-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics