Skip to main content

Mining Gait Pattern for Clinical Locomotion Diagnosis Based on Clustering Techniques

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

  • 3037 Accesses

Abstract

Scientific gait (walking) analysis provides valuable information about an individual’s locomotion function, in turn, to assist clinical diagnosis and prevention, such as assessing treatment for patients with impaired postural control and detecting risk of falls in elderly population. While several artificial intelligence (AI) paradigms are addressed for gait analysis, they usually utilize supervised techniques where subject groups are defineda priori. In this paper, we explore to investigate gait pattern mining with clustering-based approaches, in which k-means and hierarchical clustering algorithms are employed to derive gait pattern. After feature selection and data preparation, we conduct clustering on the constructed gait data model to build up pattern-based clusters. The centroids of clusters are then treated as the subject profiles to model the various kinds of gait pattern, e.g. normal or pathological. Experiments are undertaken to visualize the derived subject clusters, evaluate the quality of clustering paradigm in terms of silhouette and mean square error and compare the results with the discovery derived from hierarchy tree analysis. In addition, analysis conducted on test data demonstrates the usability of the proposed paradigm in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait. In: Human Kinetics, Champaign, IL (1992)

    Google Scholar 

  2. Judge, J.O., Davis, R.B., O˘unpuu, S.: Step length reductions in advanced age: The role of ankle and hip kinetics. J. Gerontol.: Med. Sci. 51, 303–312 (1996)

    Article  Google Scholar 

  3. Nigg, B.M., Fisher, V., Ronsky, J.L.: Gait characteristics as a function of age and gender. Gait Posture 2, 213–220 (1994)

    Article  Google Scholar 

  4. Ostrosky, K.M., et al.: A comparison of gait characteristics in young and old subjects. Phys. Ther. 74, 637–646 (1994)

    Google Scholar 

  5. Tibarewala, D.N., Ganguli, S.: Pattern recognition in tachographic gait records of normal and lower extremity handicapped human subjects. J. Biomed. Eng. 4, 233–240 (1982)

    Article  Google Scholar 

  6. Damiano, D.L., Abel, M.F.: Relationship of gait analysis to gross motor function in cerebral palsy. Develop. Med. Child Neurol. 38, 389–396 (1996)

    Article  Google Scholar 

  7. Winters, T.F., Gage, J.G., Hicks, R.: Gait patterns in spastic hemiplegia in children and young adults. J. Joint Bone Surg. 69A, 437–441 (1987)

    Google Scholar 

  8. Perry, J., et al.: Classification of walking handicap in the stroke population. Stroke 26, 982–989 (1995)

    Article  Google Scholar 

  9. O’Malley, M.J., et al.: Fuzzy Clustering of Children with Cerebral Palsy Based on Temporal-Distance Gait Parameters. IEEE Tran. ON Rehab. Eng. 5(4) (1997)

    Google Scholar 

  10. Barton, J.G., Lees, A.: An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams. Gait Posture 5, 28–33 (1997)

    Article  Google Scholar 

  11. Holzreiter, S.H., Kohle, M.E.: Assessment of gait pattern using neural networks. J. Biomech. 26, 645–651 (1993)

    Article  Google Scholar 

  12. Begg, R.K., Palaniswami, M., Owen, B.: Support Vector Machines for Automated Gait Classification. IEEE Tran. on Biomed. Eng. 52(5) (2005)

    Google Scholar 

  13. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proc. 5th Int. Conf. Automatic Face Gesture Recognition (FGR 2002) (2002)

    Google Scholar 

  14. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  15. Chan, K., et al.: Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans. Biomed. Eng. 49(9), 963–974 (2002)

    Article  Google Scholar 

  16. Inman, V.T., Ralston, H.J., Todd, F.: Human Walking. Williams and Wilkins, Baltimore, MD (1981)

    Google Scholar 

  17. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison Wesley, Sydney (1999)

    Google Scholar 

  18. Han, J., Kambe, M.: Data Mining: Concepts and Techniques. Data Management Systems. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  19. Hotho, A., Mädche, A., Staab, S.: Ontology-based Text Clustering. In: Workshop Text Learning: Beyond Supervision, IJCAI 2001 (2001)

    Google Scholar 

  20. Vaughan, C.L., Berman, B., Peacock, W.J.: Gait analysis and rhizotomy. A three year follow-up evaluation with gait analysis. J. Neurosurg. 74, 178–184 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, G., Zhang, Y., Begg, R. (2006). Mining Gait Pattern for Clinical Locomotion Diagnosis Based on Clustering Techniques. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_33

Download citation

  • DOI: https://doi.org/10.1007/11811305_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics