Skip to main content

The Practical Method of Fractal Dimensionality Reduction Based on Z-Ordering Technique

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

Abstract

Feature selection, the process of selecting a feature subset from the original feature set, plays an important role in a wide variety of contexts such as data mining, machine learning, and pattern recognition. Recently, fractal dimension has been exploited to reduce the dimensionality of the data space. FDR(Fractal Dimensionality Reduction) is one of the most famous fractal dimension based feature selection algorithm proposed by Traina in 2000. However, it is inefficient in the high dimensional data space for multiple scanning the dataset. Take advantage of the Z-ordering technique, this paper proposed an optimized FDR, ZBFDR(Z-ordering Based FDR), which can select the feature subset through scanning the dataset once except for preprocessing. The experimental results show that ZBFDR algorithm achieves better performance.

This work is sponsored by the National Natural Science Foundation of China (No.60573096), and the Opening Foundation of the Key Laboratory of Opto-Electronic Technology and Intelligent Control (Lanzhou Jiaotong University), Ministry of Education,China,Grant No. K04116.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeza-Yates, R., Navarro, G.: Block-addressing indices for approximate text retrieval. In: Golshani, F., Makki, K. (eds.) Proc of the 6th Int’l Conf on Information and Knowledge Management, pp. 1–8. ACM Press, New York (1997)

    Google Scholar 

  2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases1. In: Lomet, D.B. (ed.) Proc. of the 4th Int’l Conf Foundations of Data Organization and Algorithms, pp. 69–84. Springer, Berlin (1993)

    Chapter  Google Scholar 

  3. Jiang, D., Tang, C., Zhang, A.: Cluster Analysis for Gene Expression Data: A Survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

    Article  Google Scholar 

  4. Schena, M.D., Shalon, R., Davis, R., Brown, P.: Quantitative Monitoring of Gene Expression Patterns with a Compolementatry DNA Microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  5. Bellman, R.: Adaptive Control Process: A Guide Tour. Princeton University Press, Princeton, New Jersey (1961)

    Google Scholar 

  6. Vafaie, H., Jong, K.A.D.: Robust Feature Selection Algorithms. In: Intl. Conf. on Tools with AI, Boston, MA, pp. 356–363 (1993)

    Google Scholar 

  7. Aha, D.W., Bankert, R.L.: A Comparative Evaluation of Sequential Feature Selection Algorithms. In: Artificial Intelligence and Statistics V, pp. 199–206. Springer, New York (1996)

    Google Scholar 

  8. Scherf, M., Brauer, W.: Feature Selection by Means of a Feature Weighting Approach. Technical Report FKI-221-97, Technische Universität München, Munich (1997)

    Google Scholar 

  9. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning. AI 97, 245–271 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Francesco, C.: Data dimensionality estimation methods: a survey. Pattern Recognition 36, 2945–2954 (2003)

    Article  Google Scholar 

  11. Langley, P., Sage, S.: Scaling to Domains with many Irrelevant Features. In: Greiner, R. (ed.) Computational learning theory and natural learning systems, vol. 4, MIT Press, Cambridge, MA (1997)

    Google Scholar 

  12. Faloutsos, C., Seeger, B., Traina, A.J.M., Traina Jr., C.: Patial Join Selectivity Using Power Laws. In: ACM SIGMOD, Dallas, TX, pp. 177–188 (2000)

    Google Scholar 

  13. Kamel, I., Faloutsos, C.: Hilbert R-tree: An Improved R-tree using Fractals. In: 20th VLDB, Chile, pp. 500–509 (1994)

    Google Scholar 

  14. Chakraborty, D., Ashir, A., Suganuma, T., Mansfield Keeni, G., Roy, T.K., Shiratori, N.: Self-similar and fractal nature of Internet traffic. International Journal of Network Management 14, 119–129 (2004)

    Article  Google Scholar 

  15. Traina Jr., C., Traina, A., et al.: Fast feature selection using fractal dimension. In: XV Brazilian DB Symposium, João Pessoa-PA-Brazil, pp. 158–171 (2000)

    Google Scholar 

  16. Bao, Y., Yu, G., Sun, H., Wang, D.: Performance Optimization of Fractal Dimension Based Feature Selection Algorithm. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 739–744. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Liebovitch, L., Toth, T.: A Fast Algorithm to Determine Fractal Dimensions by Box Counting [J]. Physics Letters 141A(8), 386–390 (1989)

    Article  MathSciNet  Google Scholar 

  18. Orenstein, J., Merrett, T.H.: A class of data structures for associative searching. In: Proceedings of the Third ACM SIGACT- SIGMOD Symposium on Principles of Database Systems, pp. 181–190 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, G., Li, Z., Yuan, L. (2006). The Practical Method of Fractal Dimensionality Reduction Based on Z-Ordering Technique. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_60

Download citation

  • DOI: https://doi.org/10.1007/11811305_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics