Skip to main content

Local Linear Logistic Discriminant Analysis with Partial Least Square Components

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

  • 2962 Accesses

Abstract

We propose a nonparametric local linear logistic approach based on local likelihood in multi-class discrimination. The combination of the local linear logistic discriminant analysis and partial least square components yields better prediction results than the conventional statistical classifiers in case where the class boundaries have curvature. We applied our method to both synthetic and real data sets.

This study was financially supported by research fund of Chonnam National University in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baek, J., Kim, M.: Face recognition using partial least squares components. Pattern Recognition 37, 1303–1306 (2004)

    Article  MATH  Google Scholar 

  • Fan, J., Gijbels, I.: Local polynomial modeling and its applications. Chapman & Hall, London (1996)

    Google Scholar 

  • Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, San Diego CA (1990)

    MATH  Google Scholar 

  • Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000)

    Article  Google Scholar 

  • Garthwaite, P.M.: An interpretation of partial least squares. J. Am. Stat. Assoc. 89, 122–127 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, New York (2001)

    Book  MATH  Google Scholar 

  • Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on knowledge and data engineering 14, 673–690 (2002)

    Article  Google Scholar 

  • Loader, C.: Local regression and likelihood. Springer, New York (1999)

    MATH  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Genelaized linear models, 2nd edn. Chapman and Hall, London (1989)

    Google Scholar 

  • Nguyen, D., Rocke, D.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18, 39–50 (2002)

    Article  Google Scholar 

  • Tarca, A.L., Cooke, J.E.K.: A robust neural networks approach for spatial and intensity-dependent normalization of cDNA microarray data. Bioinformatics 21, 2674–2683 (2005)

    Article  Google Scholar 

  • West, M., Blanchette, C., Dressman, H., Huang, F., Ishida, S., Spang, R., Zuzan, H., Olason, J., Marks, I., Nevins, J.: Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS 98, 11462–11467 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baek, J., Son, Y.S. (2006). Local Linear Logistic Discriminant Analysis with Partial Least Square Components. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_64

Download citation

  • DOI: https://doi.org/10.1007/11811305_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics