Abstract
We propose a nonparametric local linear logistic approach based on local likelihood in multi-class discrimination. The combination of the local linear logistic discriminant analysis and partial least square components yields better prediction results than the conventional statistical classifiers in case where the class boundaries have curvature. We applied our method to both synthetic and real data sets.
This study was financially supported by research fund of Chonnam National University in 2003.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baek, J., Kim, M.: Face recognition using partial least squares components. Pattern Recognition 37, 1303–1306 (2004)
Fan, J., Gijbels, I.: Local polynomial modeling and its applications. Chapman & Hall, London (1996)
Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, San Diego CA (1990)
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000)
Garthwaite, P.M.: An interpretation of partial least squares. J. Am. Stat. Assoc. 89, 122–127 (1994)
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, New York (2001)
Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on knowledge and data engineering 14, 673–690 (2002)
Loader, C.: Local regression and likelihood. Springer, New York (1999)
McCullagh, P., Nelder, J.A.: Genelaized linear models, 2nd edn. Chapman and Hall, London (1989)
Nguyen, D., Rocke, D.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18, 39–50 (2002)
Tarca, A.L., Cooke, J.E.K.: A robust neural networks approach for spatial and intensity-dependent normalization of cDNA microarray data. Bioinformatics 21, 2674–2683 (2005)
West, M., Blanchette, C., Dressman, H., Huang, F., Ishida, S., Spang, R., Zuzan, H., Olason, J., Marks, I., Nevins, J.: Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS 98, 11462–11467 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baek, J., Son, Y.S. (2006). Local Linear Logistic Discriminant Analysis with Partial Least Square Components. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_64
Download citation
DOI: https://doi.org/10.1007/11811305_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37025-3
Online ISBN: 978-3-540-37026-0
eBook Packages: Computer ScienceComputer Science (R0)