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Abstract. The automatic annotation of images presents a particularly
complex problem for machine learning researchers. In this work we exper-
iment with semantic models and multi-class learning for the automatic
annotation of query images. We represent the images using scale invari-
ant transformation descriptors in order to account for similar objects
appearing at slightly different scales and transformations. The resulting
descriptors are utilised as visual terms for each image. We first aim to
annotate query images by retrieving images that are similar to the query
image. This approach uses the analogy that similar images would be an-
notated similarly as well. We then propose an image annotation method
that learns a direct mapping from image descriptors to keywords. We
compare the semantic based methods of Latent Semantic Indexing and
Kernel Canonical Correlation Analysis (KCCA), as well as using a re-
cently proposed vector label based learning method known as Maximum
Margin Robot.

1 Introduction

Due to an increasing rise of multimedia data that is available both on-line and off-
line, we are faced with the problematic issue of our ability to access or make use
of this information, unless the data is organised in such a way that allows efficient
browsing, searching and retrieval. One of these issues is image labelling or multi-
labelling where we would like to annotate an image with several keywords that
best describe it. Several solutions have been proposed using keyword association
to images and image segments [1,2,14,18].

Recently in [7,8], it was suggested that methods that use region-based im-
age descriptors generated by automatic segmentation or through fixed shapes
may lead to poor performance, as regularly used rectangular regions image de-
scriptors are not robust to a variety of transformations such as rotation. They
have suggested using Scale Invariant Feature Transformation (SIFT) [9] feature,
which are scale invariant, and utilising them as ‘visual’ terms in a document.
We then have a bag-of-visiterms model for each image, and this can then be
processed in a similar fashion to bag-of-words models for text documents.
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In this work we follow the layout suggested by [8] and test their proposed
annotation approach with KCCA and Maximum Margin Robot (MMR)[15], a
new vector label based learning method. We also suggest learning the association
between the keywords and images directly, and therefore learning the association
between keywords and particular SIFT descriptors. When a new query image is
encountered new keywords could be predicted/genrated according to its SIFT
descriptors.

The paper is laid-out as follows. In Section 2 we introduce Latent Semantic
Indexing and its usage in this context. We continue the semantic model discussion
by describing in detail Kernel Canonical Correlation Analysis in Section 3. In
Section 4 we discuss Maximum Margin Robot a new vector label based learning
method. Section 5 describes the data representation used in this work. This is
followed by the experimental setup in Section 6 and our presented results in
Section 7. Our final remarks and discussion are given in Section 8.

2 Latent Semantic Indexing

Latent Semantic Indexing (LSI)1 is a classical approach to information retrieval.
This approach is a vector based information retrieval method that uses a training
collection. Given a term document training matrix A (or image training matrix)
with rows as training examples, LSI uses the Singular Value Decomposition
(SVD) to factor A into its singular vectors. We are able to apply a noise reduction
on the data by projecting the training data into the computed k largest singular
vectors. LSI uses this in order to learn the structure of the training collection
and to project new test queries into the same semantic space. We are able to
write SVD as A′ = UΣV ′, where X ′ is the transpose of a matrix or vector X .
We denote the k-dimensional approximation of A as Ã′ = UkΣ̂kV ′

k. The rank
reduced Ã′ is an approximation of the of the original A′ and Vk is the data in
the projected semantic space, which can be seen in the following

V ′
k = Σ̂−1

k U ′
kUkΣ̂kV ′

k = Σ̂−1
k U ′

kÃ′ = (ÃUkΣ̂−1
k )′.

Since we are looking for a similarity measure, we project the query document
q into the k semantic feature space of A and look for the closest matching image
from the training corpus. Therefore, maxi

〈
vk

i ,qUkΣ̂−1
k

〉
will give us the image

from the training corpus with the largest inner project with the query image.
Where q is the query image vector and vk

i are the row vectors of Vk.

3 Kernel Canonical Correlation Analysis

Proposed by Hotelling in 1936, Canonical Correlation Analysis (CCA) is a tech-
nique for finding pairs of basis vectors that maximise the correlation between

1 Also known as Latent Semantic Analysis (LSA).
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the projections of paired variables onto their corresponding basis vectors. Cor-
relation is dependent on the chosen coordinate system, therefore even if there is
a very strong linear relationship between two sets of multidimensional variables
this relationship may not be visible as a correlation. CCA seeks a pair of linear
transformations one for each of the paired variables such that when the variables
are transformed the corresponding coordinates are maximally correlated.

Consider the linear combination x = w′
xx and y = w′

yy. Let x and y be
two random variables from a multi-normal distribution, with zero mean. The
correlation between x and y can be defined as maxwx,wy ρ = w′

xCxywy subject
to w′

xCxxwx = w′
yCyywy = 1. Cxx and Cyy are the non-singular within-set

covariance matrices and Cxy is the between-sets covariance matrix.
We suggest using the kernel variant of CCA [4] since due to the linearity of CCA

useful descriptors may not be extracted from the data. This may occur as the cor-
relation could exist in some non linear relationship. The kernelising of CCA offers
an alternate solution by first projecting the data into a higher dimensional fea-
ture space φ : x = (x1, . . . , xn) → φ(x) = (φ1(x), . . . ,φN (x)) (N ≥ n) before
performing CCA in the new feature space.

Given the kernel functions κa and κb let Ka = XX′ and Kb = YY′ be the
kernel matrices corresponding to the two representations of the data. Let X
be the matrix whose rows are the vectors φa(xi), i = 1, . . . , � and similarly Y
be a matrix with rows φb(yi). . Substituting into primal CCA equation gives
maxα,β ρ = α′KaKbβ subject to α′K2

aα = β′K2
bβ = 1. This is the dual form

of the primal CCA optimisation problem given above, which can be cast as a
generalised eigenvalue problem and for which the first k generalised eigenvectors
can be efficiently found.

The theoretical analysis shown in [5] suggests to regularise kernel CCA as it
shows that the quality of the generalisation of the associated pattern function is
controlled by the sum of the squares of the weight vectors norms. Due to space
limitation we refer the reader to [5,6] for a detailed analysis and the regularised
form of KCCA. One aspect we will mention here though is that it is not the case
that when using a linear kernel KCCA reduces to standard CCA (see the afore-
mentioned articles for details). Using a linear kernel and KCCA has advantages
over CCA, the most prominant of which in our case is speed; this is why we use
this variant here. We are able to apply a similar procedure to that used in LSI
to find the most matching image from the training corpus to the query image.
Whereas here we project the data into the semantic space using a selection of
the found eigenvectors corresponding to the largest correlation values.

3.1 Keywords Reconstruction

We are faced with the problem of creating a new document d∗ (i.e. a set of
keywords) that best matches our image query. Based on the idea of CCA we
are looking for a vector that has maximum covariance to the query image with
respect to the weight matrices α and β. Let f = Ki

xα, where the vector Ki
x

contains the kernelised inner products between the query image i and the images
occurring in the training set. We have maxd∗

〈
f, W ′

yd∗
〉
, where Wy is the matrix
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containing the weight vectors as rows. The need to use the weight vectors for
the documents limits us to the use of linear kernels.

For simplicity we assume that the expected structure of the document is of
a single keyword that is the most relevant keyword for the query image. Let n
be the number of known keywords in the training dataset. We may say that the
vector d∗ gives a convex combination of the columns of the identity matrix (i.e.
‖d∗‖ = 1), thus it satisfies the constraints

n∑
i=1

d∗i = 1, d∗i ≥ 0 i = 1, . . . , n. (1)

The problem becomes maxd∗ f ′W ′
yd∗ under the same constraints. Let c = f ′W ′

y

we have maxd∗ cd∗. Due to the constraints in equation (1) the components of
the optimum solution d∗ is equal to

(d)∗i =
{

1 i = arg maxj cj ,
0 otherwise.

This generates a document containing a single keyword. We modify the original
maximisation problem to relax the optimum solution to include keywords above a
threshold T . The new relaxed formulation will generate a document with varying
number of keywords, depending on T . We are able to use the value of cj to rank
the relevance of the selected keywords. We do this by sorting the values of c and
taking the keywords relating to the largest values of c above threshold T .

4 Maximum Margin Robot

The Support Vector Machine(SVM) has been shown to be a very useful method
of machine learning, but is restricted to directly solving binary classification
problems only. There is a strong demand for extending the underlying idea to-
wards multi-class classification and learning when the outputs have complex
structure. The known approaches are tackling with the exploding computational
complexity and the range of potential applications becomes very limited. There
is a straightforward algebraic generalisation of the SVM which can handle ar-
bitrary vector outputs and preserves the same computational complexity of its
binary ancestor. The structural learning problems can then be solved via an em-
bedding into a properly chosen vector space. The learning strategy in the vector
label learning can be stated as a three-phase process:

Embedding: where the structures of the input and output objects are repre-
sented in properly chosen Hilbert spaces, reflecting the similarity and the
dissimilarity of the objects.

Optimisation: has to find the similarity based matching between the input
and the output representations,

Inversion (Pre-image problem): has to recover the best fitting output struc-
ture of its vector representation.
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The variant of vector valued learning we introduce was born as a reinterpre-
tation of the variables and parameters occuring in the Support Vector Machine:
In the original representation yi ∈ {−1, +1} are binary outputs and w is the
normal vector of the separating hyperplane. While in the new representation
yi ∈ Y are arbitrary outputs ψ(yi) ∈ Hψ embedded labels in a linear vector
space, and wT is a linear operator projecting the input space into the output
space. The output space is a one dimensional subspace in the SVM.

The details of reinterpretation of MMR2 are given in Table 1. Due to limited
space we refer the reader to [15] where the method is first introduced.

Table 1. SVM and MMR interpretation

Binary class learning Vector label learning
Support Vector Machine (SVM) Maximum Margin Robot (MMR)

min 1
2 wT w
� �� �

‖w‖2
2

+C1T ξ 1
2 tr(WT W)
� �� �
‖W‖2

F robenius

+C1T ξ

w.r.t. w : Hφ → R , normal vec. W : Hφ → Hψ , linear operator

b ∈ R , bias b ∈ Hψ , translation(bias)
ξ ∈ R

m, error vector ξ ∈ R
m, error vector

s.t. yi(wT φ(xi) + b) ≥ 1 − ξi

�
ψ(yi),Wφ(xi) + b

�
Hψ

≥ 1 − ξi

ξ ≥ 0, i = 1, . . . , m ξ ≥ 0, i = 1, . . . , m

(2)

5 Data Representation

There is a great deal of importance on the textural and image means of repre-
sentation, as we would like to be able to extract as much detailed information as
possible for the learning process. Various approaches have been suggested such as
colour moments and Gabor texture descriptors[17] as well as scale invariant in-
terest points[10] and affine invariant interest point detector [11]. Scale Invariant
Feature Transformation (SIFT) have been introduced by [9] and have been shown
to be superior to other descriptors[12]. This is due to the fact that the SIFT de-
scriptors are designed to be invariant to small shifts in position of the salient (i.e.
prominent) region. SIFT transforms the image data into scale invariant coordi-
nates relative to local features. The underlying idea of SIFT is to extract distinc-
tive invariant features from an image such that it could be used to perform reli-
able matching between different views of an object or scene. Since we are aiming
to learn the association of a keyword to an object, which could appear in different
angels and scenes, we find SIFT ideal for the image representation.
2 MMR code - http://www.ecs.soton.ac.uk/∼ss03v/mmr.html
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Documents are usually represented by word frequency. That is, the number
of occurrences of each word in the document is counted and a vector of word-
frequencies is created. Although this simplistic approach is usually sufficient for
good performance we describe Term Frequency Inverse Document Frequency
(TFIDF)[16], which computes the following

TFIDF(di, wj) = |{wj ∈ di}| log
(
� |{di ∈ D: wj � di}|−1

)
.

The TFIDF is a means of amplifying the influence of words that occur often in
a document but relatively rarely in the whole collection. We apply the TFIDF
on the image SIFT descriptors as they were post processed as to mimic the
concept of words (SIFT descriptors) in documents (images), the pseudo-details
of this procedure are given in the following section and further information can
be found in [7]. In the experiments results section we compare the application
of TFIDF on the visual terms as well as keeping them as frequency vectors.

6 Experimental Setup

We have used the University of Washington Ground Truth Image Database3,
which contain 697 public-domain images that have been annotated with an av-
erage of ∼ 5 keywords per image and with an overall of 287 keywords in the
dictionary. [8] has kindly provided us with the post processed data. SIFT de-
scriptors were computed from the images and then clustered using the batch
k-means clustering algorithm with random starting points in order to build a
vocabulary of ‘visual’ words [7]. Each image in the entire data-set then had its
feature vectors quantised by assigning the feature vector to the closest cluster.
This amounted into a uniform feature vector of 3000 visual terms. TFIDF was
applied on the new image feature vector to amplify the influence of SIFT de-
scriptors that occur often in an image but rarely in the whole set of images. The
keywords have been stemmed, having errors corrected and merging plural terms
into singular forms. Henceforth the original 287 terms were reduced to 170.

We find the frequency of the keywords in the dictionary to be very uneven4,
therefore further reduce the keywords by removing the all keywords that only
have one occurrence throughout the database. This rendered us with 132 key-
words in the dictionary. The keywords were represent as a frequency vector.

We have repeated all experiments 10 times where in each repeat the database
was randomly and evenly split into a training and testing set. The 10 repeats
are in order to obtain some statistical verification for the used methods. In each
run we use the same random split across all methods. We use the same number
of dimensional selection k for the LSI semantic project as in [8] (k = 40) since
we initially try to reproduce their LSI results.

3 http://www.cs.washington.edu/research/imagedatabase/ groundtruth/
4 ∼ 33% of the words have more then 10 occurrences and ∼ 3% have more then 100

occurrences in the database.
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Using the described method in [6,5] for the selection of the KCCA regularisa-
tion parameter we find a regularisation value of τ = 0.2, and by manual testing
a feature selection set to 10 to give good results. While the SVD is only applied
on the training and query images, KCCA aims to learn the correlation between
the training images and their associated keywords. MMR is similar to KCCA
but learns the keywords as a multi-label of the images. We use linear kernels
across the methods.

6.1 Performance Measure

In order to asses the performance of the discussed methods, we present two
complementing measures from the content based retrieval literature. We first
consider the normalised score measure, as suggested by [1]. This measure gives
a value of 1 if the image is annotated exactly correctly, 0 for predicting nothing
or everything and a value of −1 if the exact complement of the original word set
is predicted. Throughout the experimentation we multiply this measure by 100.

Let r be the number of correctly predicted keywords, n be the number of orig-
inal keywords, w be the number of incorrectly predicted keywords and N the
number of words in the dictionary. We are able to define the normalised score
measure to be ENS = r(n)−1 − w(N − n)−1. The problem with the normalised
score measure is that if we consider an annotation method that annotates an
image exactly, then the normalised score does not sufficiently weight the incor-
rect guesses. This was demonstrated by [13], where they have shown that the
normalised score is maximised when their annotation system returned 40 key-
words per image on a test database with an average of 18.5 keywords per image.
This shows that the normalised score may not account for the added noise (i.e.
incorrect keywords) once all correct keywords have been selected.

We therefore choose to use the precision and recall evaluation as the main
measure of the methods performances. We are able define recall as Recall =
r(n)−1, and percision as Precision = r(r + w)−1. We would like to have a high
ratio of correctly annotated keywords to the number of keywords annotated and
a high overall ratio of correct keywords (i.e. high precision and high recall).

7 Results

In the following section we present out obtained results. Throughout the pre-
sented results, best resutls are highlighted in bold. Initially We present the meth-
ods run-time in seconds; KCCA - 2.61, MMR - 0.19 and LSI - 57.42. We find
that the vector-label learning algorithm MMR is able to solve the multi-label
optimisation problem ∼ 13.74 times faster than KCCA and ∼ 302.2 times faster
than applying the SVD procedure.

In our first task we aim to annotate a query by retrieving to it the most sim-
ilar image from the training corpus. The query image is then annotated with
the keywords from the found matching image. In this task we compare KCCA,
MMR and LSI, we also provide an indication of how good the image annotation
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approach would perform if the “matching” image would have been drawn ran-
domly from the training corpus. In Tables 2 and 3 we give the normalised score
measure for the methods on the testing and training set.

Table 2. Image Retrieval Results Comparison (Train Set)

Method Precision Recall ENS

KCCA (10) - TFIDF 68.77% ± 1.38% 80.79% ± 1.29% 79.41 ± 1.34
MMR - TFIDF 36.98% ± 5.43% 35.99% ± 2.41% 33.07 ± 2.50

LSI (40) - TFIDF 20.34% ± 5.04% 21.07% ± 5.67% 17.42 ± 5.15
KCCA (10) - FV 68.45% ± 1.56% 80.42% ± 1.60% 79.03 ± 1.67

MMR - FV 31.28% ± 1.95% 24.08% ± 2.24% 28.47 ± 2.01
LSI (40) - FV 20.67% ± 2.81% 20.64% ± 2.98% 17.67 ± 2.96

We are able to observe that all methods are able to find on average matching
images that contain keywords that do not contain everything or nothing (an
ENS value of 0), but that KCCA with a feature selection of 10 is able to find
more images with a similar keyword annotation. It is surprising to observe that
LSI and Random have a similar performance level. As discussed in the previous
section the normalised score measure may not be an ideal performance measure,
therefore we provide in Table 2 the precision and recall performance on the
training set and in Table 3 the precision and recall performance measure on the
testing set. We again observe that LSI on average has a similar performance
to random. Although as indicated by the large standard deviation, there are
random splits of training and testing that produce a recall and precision value of
∼ 35%. We are assured that learning is occurring when we compare KCCA and

Table 3. Image Retrieval Results Comparison (Test Set)

Method Precision Recall ENS

KCCA (10) - TFIDF 37.01% ± 1.22% 45.92% ± 1.11% 42.95 ± 1.16
MMR - TFIDF 34.15% ± 5.32% 32.95% ± 1.39% 29.96 ± 1.44

LSI (40) - TFIDF 19.97% ± 5.44% 20.54% ± 5.82% 17.08 ± 5.58
KCCA (10) - FV 36.58% ± 1.37% 45.14% ± 1.46% 42.23 ± 1.46

MMR - FV 21.73% ± 1.44% 29.11% ± 1.48% 26.30 ± 1.44
LSI (40) - FV 19.31% ± 3.23% 18.93% ± 2.82% 16.30 ± 3.36

Random 19.27% ± 0.92% 19.21% ± 0.92% 16.26 ± 0.9

MMR to random. We are able to see that MMR produces twice the recall and
precision and KCCA twice the performance of precision and ∼ 2.5 times of recall.
We find that the application of TFIDF on the ‘visual’ terms does boost results
implying that increasing the weighting of SIFT descriptors that occur frequently
within an image but not so in overall images, helps the learning process. We were
unable to reproduce the LSI results given in [8] where it performed best.
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In Table 4 we give an example of three query images and the keywords of
the retrieved images from the various methods. We do not display the actual
retrieved images due to lack of space.

Table 4. Image Annotation via Matching Image Retrieval

In the second experiment we aim to predict a multi-label using the MMR
and generate a new best matching document to the query using KCCA. In both
methods we predict/create a new document containing the exact number of
keywords as with the original query.

In Tables 5 and 6 we again provide the normalised score measure for com-
pleteness. We are able to observe that here the performance of random extremely
degrades from that quoted performance in Tables 2 and 3 while that of KCCA
and MMR stays similar. In Table 5 we give the performance on the training set
and in Table 6 the performance on the testing set is displayed. We notice that
the recall and precision values are equivalent to each other, we presume that this
occurs due to the fact that for each query image we predict/create a different
set of keywords (according to the number of keywords in the query image).

We observe that although we are now trying to predict/generate keywords
directly from an image rather than finding a similar image and using its key-
words, our results are similar across the two approaches. This similarity is not
surprising as in both approaches we are learning the association between images
and words and not images to images, we only change our testing criterion in
each annotation procedure. We find as in the previous annotation approach that
the application of TFIDF increases the methods performance.
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Table 5. Keyword Generation Results Comparison (Train Set)

Method Precision & Recall ENS

KCCA (10) - TFIDF 68.1% ± 1.28% 67.01 ± 1.29
MMR -TFIDF 37.12% ± 0.96% 34.78 ± 1.01

KCCA (10) - FV 68.50% ± 1.36% 67.42 ± 1.38
MMR - FV 28.30% ± 1.43% 25.64 ± 1.49

Table 6. Keyword Generation Results Comparison (Test Set)

Method Precision & Recall ENS

KCCA (10) 38.16% ± 1.41% 36.06 ± 1.43
MMR 31.42% ± 1.77% 28.9 ± 1.82

KCCA (10) - FV 36.80% ± 1.36% 34.60 ± 1.38
MMR - FV 23.75% ± 2.05% 20.97 ± 2.09
Random 3.63% ± 0.37% 0.13 ± 0.28

Table 7. Keyword Generation

In Table 7 we give an example of three query images and the keywords that
were predicted/generated from the various methods. While performing quite
accurately on image 1 it is interesting to observe that in image 2 MMR replaced
Cloud with Snow, while KCCA learnt the association of the keywords which
described the surroundings of the image. The third image query shows a more
complicated example due to the density of elements within it. It is visible that
MMR keyword prediction, except for Fields, could not really describe the image
although Water Fall and Duck Pond could be somewhat understood as there
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is water in the image. KCCA generated an incorrect annotation of Building
probably due to the high density of trees which could resemble the structure of
a building.

We find that in both image annotation procedures KCCA and MMR perform
extremely well in comparison to LSI and random, indicating that 1) learning the
association of keywords to image descriptors using superior semantic models can
produce good results and 2) we are able to learn the association as a multi-label
task while retaining the complexity of the learning to a practical minimum. It
is interesting in to note that while applying TFIDF on the visual terms boosts
results for both LSI and MMR, KCCA seems to stay constant in its keyword
prediction and annotation performance. We believe that this shows that even
without increasing the weighting of frequently occurring SIFT descriptors within
an image, KCCA is able to find matching correlation between the keywords and
those SIFT descriptors.

8 Conclusions

Two annotation procedures were presented; the first aiming to retrieve an image
best matching a query image and the second aiming to annotate a query image
directly. We have shown that the direct annotation can produce as good results
as an image comparison. Although the analogy of annotating an image based
on the most similar image is adequate we believe that learning the relationship
between keywords and image descriptors to be a more interesting and challenging
task. In our results we show that it is indeed possible to learn this association
directly and still provide good results. In future work we would like to explore
enhancing the annotation accuracy by combining several image descriptors[3]
as well as examining a new non orthogonal representation of the keywords as
labels for the MMR method. Further work on KCCA parameter selection and
experimental reproduction on a larger database.
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